
Chapter 9

Shortest paths in dense
distance graphs

The crux of Chapter 8 was in showing (Section 8.3) how to emulate the Bellman-
Ford algorithm on the dense distance graph in time roughly proportional to the
square of the number of boundary vertices. In this chapter we will show1 how
to emulate Dijkstra’s algorithm on the dense distance graph in time roughly
proportional to the number of boundary vertices, even though the number of
edges in those graphs is proportional to the square of the number of boundary
vertices!

We recall Dijkstra’s algorithm. The algorithm maintains a heap of vertices
labeled by estimates d(·) of their distances from the root. At each iteration,
the vertex v with minimum estimated distance is extracted from the heap (its
estimate is in fact the correct distance), and all the arcs whose tail is v are
relaxed. In the pseudocode, this relaxation is done by the procedure Activate,
which also updates the heap whenever the distance label of a vertex changes.

Algorithm 9.1 Dijkstra(G, s)

1: for all v ∈ V (G): d(v)←∞
2: d(s)← 0
3: initialize an empty heap Q
4: UpdateHeap(Q, s, d(s))
5: S ← ∅
6: while S 6= V (G) do
7: v ← ExtractMin(Q)
8: Activate(Q, G, v, d)
9: S ← S ∪ {v}

In Chapter 8, the speedup is obtained by decomposing the dense distance

1Parts of our description were exracted and adapted from [Kaplan et al., 2012]

115

116 CHAPTER 9. SHORTEST PATHS IN DENSE DISTANCE GRAPHS

graph into subgraphs that have the Monge property. The Monge property is
exploited to relax the edges in each subgraph efficiently. We show that a similar
idea works for Dijkstra’s algorithm. The graph can be decomposed into sub-
graphs, which allow for a fast implementation of ExtractMin and Activate.
In the case of Dijkstra’s algorithm additional coordination is required between
the subgraphs since the algorithm must identify, at each step, the vertex with
minimum label in the whole graph, whereas the efficient implementation handles
each subgraph separately.

Recall the definition of the dense distance graph from Chapter 8. A cycle
separator C with n = O(

√
N) vertices separates a planar graph G with N

vertices into an external and internal subgraphs, G0 and G1. Let Ki (i ∈ {0, 1})
be the complete graph on the boundary vertices of Gi (the vertices of C), where
the length of arc uv of Ki is the u-to-v distance in Gi. The union ∪iKi is called
the dense distance graph of G w.r.t. C.

We note that in some cases the graph G is decomposed into more than two
regions Gi. The definition of the dense distance graph trivially extends to such
cases. The algorithm described in this chapter can be generalized to handle
more than two regions as well, under the restriction that the boundary vertices
within each region lie on a constant number of faces. For simplicity, we describe
the two-region case.

9.1 Decomposing a DDG into bipartite graphs

To be able to implement ExtractMin and Activate efficiently, the algorithm
decomposes the dense distance graph into bipartite graphs. Each complete
graph Ki is decomposed into complete bipartite graphs as follows. Refer to
Figure 9.1. Consider the sequence of vertices of Ki according to their clockwise
order on C. The algorithm splits the vertices into two consecutive halves A and
B, and adds the complete bipartite graph on A and B to the decomposition.
Next, it recurses on A and on B. Since A and B are disjoint, and their size
is reduced by a factor of two at each level of the recursion, each vertex of Ki

appears in O(log |C|) = O(log n) bipartite subgraphs. Let H = {Hi} denote the
set of all bipartite graphs in the decompositions of both Ki’s. The total number
of bipartite graphs is |H| = O(|C|) = O(n) = O(

√
N).

The decomposition procedure can also be illustrated by considering the
weighted incidence matrix of Ki. While this matrix is not Monge, the sub-
matrices that correspond to bipartite graphs are Monge. See Figure 9.2.

Lemma 9.1.1. Let M be the (weighted) incidence matrix of Ki. Let H be a
graph in the decomposition of Ki into bipartite graphs. The restriction of M to
the vertices of H is Monge.

The proof is nearly identical to that of Lemma 8.1.1.

9.1. DECOMPOSING A DDG INTO BIPARTITE GRAPHS 117

v

Figure 9.1: Decomposition of a complete graph over a set of vertices on a
single face into bipartite complete graphs such that each vertex appears in a
logarithmic number of bipartite graphs. The bipartitions in all the bipartite
graphs in which the vertex v appears are indicated.

split the remaining submatrices A × A and B × B in the same way, until we get to sequences
of length 1. See Figure 18 for an illustration. Together, all the submatrices defined by this
recursive partitioning of M are pairwise disjoint and cover M . Note that each boundary node
is contained in O(log r) submatrices.

B A

A

B

(a) Submatrices resulting from the
first three levels of the recursive de-
composition are shown. The shaded
blocks require further decomposi-
tion.

v
A B

(b) Illustration of the correspond-
ing partitions of boundary nodes.
All bipartitions in which a particular
node v appears are indicated.

Figure 18: Illustration of the decomposition of M into Monge Submatrices.

The initialization of the Monge heap consists of computing (explicitly, all entries of) M ,
splitting it into submatrices, and constructing the range minima data structures. Since all
boundary nodes lie on a single hole, computing the entries of M (i.e., distances between all
pairs of boundary nodes) takes O(r log r) time and O(r) space using Klein’s multiple-source
shortest-path algorithm [38] (see also [14]). It can be easily verified that all the other tasks can
be performed within the same time and space bounds. This entire process is done once, during
preprocessing, before handling any query or update.

During a distance computation we maintain, for each submatrix M ′, a bipartite Monge sub-
heap (Fakcharoenphol and Rao call it a bipartite on-line Monge searching data structure), which
supports the Monge heap operations restricted to the bipartite subgraph that M ′ represents,
using the fact that the submatrix has the Monge property.

The bipartite Monge subheap. The bipartite Monge subheap H ′ of a Monge submatrix
M ′ with a set of rows A and a set of columns B maintains a distance label δ′(u) for every node
u ∈ A. Initially δ′(u) = ∞ for every u ∈ A. The distance label of a node v ∈ B is defined to
be δ′(v) = minu∈A{δ′(u) +M ′

uv} (recall that M ′
uv = dP (u, v)) and is not stored explicitly. For

every node v ∈ B we maintain a bit indicating whether v has already been extracted from H ′ or
not. Initially all nodes of B are in H ′. A node v is extracted from H ′ when it has the smallest
distance label among all nodes in the global heap H and therefore also in the Monge heap MHP

containing H ′. The monotonicity of the smallest label in Dijkstra’s algorithm implies that after
v is extracted from H ′ a subsequent decrease in δ′(u) for a node u ∈ A cannot cause δ′(v) to
decrease: the value of δ′(u) (which will always be lower bounded by d(s, v)) cannot be smaller
than the value of δ′(v) when it was extracted from H ′.

The bipartite Monge subheap structure supports the following operations (H ′ is implicit in
the following notation):

29

Figure 9.2: Illustration of the decomposition of M into Monge Submatrices.

118 CHAPTER 9. SHORTEST PATHS IN DENSE DISTANCE GRAPHS

9.2 The Monge heap

The algorithm maintains a data-structure, called a Monge Heap, for each bipar-
tite graph H ∈ H. Let A,B be the bipartition of the vertex set of H. The Monge
heap maintains distance labels of the vertices in A, and implicitly maintains the
distance estimates to the vertices of B. It supports the following operations to
facilitate the implementation of Dijkstra’s algorithm. The initials FR stand for
Fakcharoenphol and Rao, who conceived this data structure.

1. FR-Activate(a, d)- Sets the label of vertex a ∈ A to be d, and implicitly
relaxes all arcs incident to a. This operation may be called at most once
per vertex, and runs in O(log |A|) amortized time.

2. FR-FindMin - Returns the vertex v ∈ B with minimum label among
those that have not yet been extracted. This operation also returns the
label d of v and takes O(1) time.

3. FR-ExtractMin - Returns the vertex v ∈ B with minimum label among
those that have not yet been extracted, and removes v from the set B.
This operation also returns the label d of v and takes O(log |B|) time.
The integrity of the data structure is only guaranteed if all subsequent
FR-Activate operations have labels at least d.

The next section describes how Monge heaps are used to implement Dijk-
stra’s algorithm. The following section deals with the implementation of the
Monge heap itself.

9.3 Implementing Dijkstra’s algorithm using Monge
heaps

The edges of each bipartite subgraph can be implicitly relaxed efficiently
using a dedicated Monge heap Mj for each bipartite subgraph Hj ∈ H. The
algorithm initializes the Monge heaps and activates s in those Monge heapsMj

where s ∈ Aj .
The minimum elements from each Monge heap Mj are maintained in a

regular global heap Q.
In each iteration of the main loop, a vertex v with global minimum label is

extracted from the global heap Q. LetMĵ be the Monge heap that contributed
v, and let dv be its distance label. The algorithm extracts v from Mĵ , and
updates the new minimum vertex in Mĵ in the global heap Q.

Note that since a vertex v appears in multiple Hj ’s, v may be extracted
as the minimum element of the global heap Q multiple times, once for each
Monge heap it appears in. However, the label d(v) of v is finalized at the first
time v is the minimum element of Q. At that time, and only at that time, the
algorithm adds v to the set of vertices whose distance label is finalized, activates
v using FR-Activate in all Monge heaps Mj such that v ∈ Aj , and updates
the representatives of those Monge heaps in Q.

9.3. IMPLEMENTINGDIJKSTRA’S ALGORITHMUSINGMONGE HEAPS119

Algorithm 9.2 FR-Dijkstra(H, s)
Input: a set H = {Hj}, where each Hj is a complete bipartite graph on
V (Hj) = Aj ∪Bj .
a vertex s in

⋃
Hj .

Output: the distances d(·) from s in
⋃
Hj .

1: initialize a Monge heap Mj for each Hj ∈ H
2: for all v ∈ ⋃V (Hj): d(v)←∞
3: d(s)← 0
4: for all Hj ∈ H s.t. s ∈ Aj : FR-Activate(Mj , s, d(s))
5: initialize an empty regular heap Q
6: for all Hj ∈ H: UpdateHeap(Q,Mj ,FR-FindMin(Mj))
7: S ← {s}
8: while S 6= ⋃V (Hj) do
9: Mĵ , v, dv ← ExtractMin(Q)

10: FR-ExtractMin(Mĵ)
11: UpdateHeap(Q,Mĵ ,FR-FindMin(Mĵ))
12: if v /∈ S then
13: d(v)← dv
14: S ← S ∪ {v}
15: for each Hj s.t. v ∈ Aj do
16: FR-Activate(Mj , v, d(v))
17: UpdateHeap(Q,Mĵ ,FR-FindMin(Mj))
18: return d

120 CHAPTER 9. SHORTEST PATHS IN DENSE DISTANCE GRAPHS

9.3.1 Analysis

Since each vertex appears in O(log n) bipartite graphs Hj in H, the number
of times each vertex is extracted from the global heap Q is O(log n). Since Q
contains one representative element from each Monge heap Mj , a single call
to ExtractMin on Q takes O(log(

√
n)) = O(log n) time. Therefore, the total

time spent on extracting vertices from Q is O(n log2 n).
As for the cost of operations on the Monge heaps, FR-Activate and FR-

ExtractMin are called at most once per vertex in each Monge heap, and
the number of calls to FR-FindMin is bounded by the number of calls to FR-
Activate and FR-ExtractMin. Since each vertex appears in O(log n) Monge
heaps, the total number of these operations is O(n log n). Since each operation
takes O(log n) amortized time, the total time spent on operations on the Monge
heaps is O(n log2 n) as well.

It follows that the FR-Dijkstra takes O(n log2 n) = O(
√
N log2N) time

to complete.

9.4 Implementing Monge heaps

Let M be the Monge heap of a bipartite subgraph H with corresponding
weighted incidence matrix M with a set of n rows A and a set of n columns B.

The Monge heapM stores a range-minimum data structure over the rows of
M . Given a row u ∈ A and a range of columns [v1, v2] in B, the range-minimum
data structure returns argminv1≤v≤v2Muv in O(log n) time.
M maintains a distance label δ(u) for every vertex u ∈ A. Initially δ(u) =∞

for every u ∈ A. The distance label of a vertex v ∈ B is defined to be δ(v) =
minu∈A{δ(u) + Muv} and is not stored explicitly. For every vertex v ∈ B the
algorithm maintains a bit indicating whether v has already been extracted from
M or not. Initially all vertices of B are in M. A vertex v is extracted from M
when it has the smallest distance label among all vertices in the global heap Q.
The monotonicity of the distance labels of nodes extracted from the global heap
in Dijkstra’s algorithm implies that after v is extracted from M a subsequent
decrease in δ(u) for a vertex u ∈ A cannot cause δ(v) to decrease: the value of
δ(u) cannot be smaller than the value of δ(v) when v was extracted from M.

We say that u ∈ A is the parent of v ∈ B (and v is the child of u) if δ(u) is
finite and δ(v) = δ(u) + Muv; see below for handling ties. As the execution of
Dijkstra’s algorithm progresses, the distance labels δ(u) of vertices u ∈ A may
change and thereby the parents of vertices v ∈ B may change. Assuming that
the parent of every member of v ∈ B is uniquely defined (at some fixed time),
the Monge property of M implies the following two properties:

1. The set of vertices of B for which a specific vertex u ∈ A is the parent are
consecutive in B.

2. If vertex u′ follows u in A, then the set of vertices of which u′ is the parent
follows in B the set of vertices of which u is the parent.

9.4. IMPLEMENTING MONGE HEAPS 121

Furthermore, in case of ties, i.e. when there are two different vertices u1, u2 ∈ A
such that δ(v) = δ(u1)+Mu1v = δ(u2)+Mu2v, the Monge property of M implies
that ties can always be broken by picking a parent for v such that Properties
(1) and (2) above continue to be satisfied. The algorithm indeed (implicitly)
maintains parents in this manner such that Properties (1) and (2) are satisfied.
Note that vertices in B with infinite distance labels also have parents in A. For
such a vertex v any vertex u ∈ A satisfies that δ(v) = δ(u) + Muv and the
algorithm can choose any vertex to be a parent of v as long as it maintains
Properties (1) and (2).

The algorithm maintains a binary search tree T of triplets of the form
(a, b1, b2) where a ∈ A, b1, b2 ∈ B, and the set of vertices of B between b1
and b2 (inclusive) is a maximal interval of vertices of B that are currently inM
and whose parent is a. See Figure 9.3. Note that the same vertex a ∈ A may
appear in more than one triplet of T because, after extracting vertices of B from
the Monge heap, the set of non-extracted vertices of which a is a parent might
not be a contiguous subsequence of the vertices of B.2 That is, the extracted
elements form gaps in the sequence, so it is required to maintain the remaining
elements as the union of smaller contiguous subsequences. The order of the
triplets in T is lexicographic. Namely: (1) If vertex a′ follows a in A then all
the triplets (a′, b′1, b

′
2) follow all the triplets (a, b1, b2). (2) The set of triplets

(a, b1, b2) of the same vertex a are ordered in T by the order of their (pairwise
disjoint) intervals in B.

The Monge heap structure also consists of a standard heap QB containing,
for every triplet (a, b1, b2) ∈ T , a vertex b between b1 and b2 (inclusive) that
minimizes δ(b) = δ(a) +Mab. The key of b in QB is δ(b).3

The operations on a Monge heap are implemented as follows:

• FR-FindMin: Return a vertex b with minimum distance label in QB .

• FR-ExtractMin: Extract the vertex b with minimum distance label
from QB . The algorithm marks b as removed from M. It finds the
(unique) triplet (a, b1, b2) containing b in T . Let b′ and b′′ be the members
of B that precede and follow b, respectively, within this triplet, if they
exist. The algorithm splits the triplet (a, b1, b2) and replaces it with two
triplets (a, b1, b

′) and (a, b′′, b2) (if these intervals are defined). In each of
these new triplets it finds the vertex b∗ that minimizes δ(b∗) = δ(a)+Mab∗ ,
using the range minimum data structure of M , and then inserts b∗ into
QB .

• FR-Activate(u, d): First the algorithm sets δ(u) = d and then finds the
children of u in B.

2For example, as depicted in Figure 9.3, z may be the parent of vertices 9–16 of B just
before we extract vertex 13 of B from the subheap. After this extraction z is the parent of
vertices 9–12 of B which form one triplet (z, 9, 12), and of vertices 14–16 which form another
triplet (z, 14, 16).

3This heap can be implemented within the tree T by maintaining subtree minima at the
nodes of T .

122 CHAPTER 9. SHORTEST PATHS IN DENSE DISTANCE GRAPHS

A B

v

w

x

y

z

u

A B

v

w

x

y

z

u

Figure 19: The triplets in the tree T of a bipartite Monge subheap. Each triplet (a, b1, b2) is
depicted by a line from a to b1, a line from a to b2 and an ellipse around the nodes of B between
b1 and b2. On the left we see the triplets before the scan of u and on the right we see the triplets
after that scan. Nodes v and w have already been deleted from this bipartite Monge subheap
and therefore do not belong to any triplet.

if they exist. We split the triplet (a, b1, b2) and replace it with two triplets (a, b1, b
′) and

(a, b′′, b2) (if these intervals are defined). In each of these new triplets we find the node b∗

that minimizes δ′(b∗) = δ′(a) +M ′
ab∗ , using the range minima data structure for the row

of a in M ′, and then we insert b∗ into HB.

• Scan(u, d): First we set δ′(u) = d and then we find the children of u in B.

If u is the first node in the bipartite Monge subheap for which this operation is applied
then all the nodes of B are children of u (none of them could have already been removed,
and u is the only vertex in A with a finite distance label). Otherwise, we next describe
how to find the children of u which are in triplets associated with nodes preceding u in
A. We find children of u which are in triplets associated with nodes following u in A in a
fully symmetric manner.

If there is no triplet t = (w, f1, f2) such that w precedes u in A then u does not have
children in triplets associated with nodes preceding it in A. Otherwise, we search T
and find the last triplet t = (w, f1, f2) such that w precedes u in A. We then traverse
the triplets in T backward, starting from t, until we reach a triplet (a, b1, b2) such that
δ′(a) + M ′

ab1
< δ′(u) + M ′

ub1
or until we scanned all triplets preceding t without finding

such a triplet (a, b1, b2). Then we perform one of the following steps.
(1) If we did not find a triplet (a, b1, b2) as above then all nodes in triplets preceding t
become children of u.

31

Figure 9.3: The triplets in the tree T of a Monge heap. Each triplet (a, b1, b2)
is depicted by a line from a to b1, a line from a to b2 and an ellipse around the
vertices of B between b1 and b2. On the left we see the triplets before the scan
of u and on the right we see the triplets after that scan. Vertices v and w have
already been deleted from this Monge heap and therefore do not belong to any
triplet.

If u is the first vertex in the Monge heap for which this operation is applied
then all the vertices of B are children of u (none of them could have already
been removed, and u is the only vertex in A with a finite distance label).
Otherwise, we next describe how to the algorithm finds the children of
u which are in triplets associated with vertices preceding u in A. The
algorithm finds children of u which are in triplets associated with vertices
following u in A in a symmetric manner.

If there is no triplet t = (w, f1, f2) such that w precedes u in A then
u does not have children in triplets associated with vertices preceding
it in A. Otherwise, the algorithm searches T and finds the last triplet

9.4. IMPLEMENTING MONGE HEAPS 123

t = (w, f1, f2) such that w precedes u in A. It then traverses the triplets
in T one by one backwards, starting from t, until it reaches a triplet
(a, b1, b2) such that δ(a) + Mab1 < δ(u) + Mub1 or until it scanned all
triplets preceding t without finding such a triplet (a, b1, b2). Then the
algorithm performs one of the following steps.
(1) If no triplet (a, b1, b2) as above was found then all vertices in triplets
preceding t become children of u.
(2) If δ(a)+Mab2 ≥ δ(u)+Mub2 then among vertices in triplets preceding
t, the first vertex in B whose parent changes to u belongs to the triplet
(a, b1, b2). It is found by a binary search on the subsequence of B between
b1 and b2.
(3) If δ(a)+Mab2 < δ(u)+Mub2 and (a, b1, b2) is not t then among vertices
in triplets preceding t, the first vertex in B whose parent changes to u is
the first vertex in the triplet following (a, b1, b2).
(4) If δ(a) + Mab2 < δ(u) + Mub2 and (a, b1, b2) is t then none of the
vertices in triplets associated with vertices preceding u in A acquires u as
its parent.

Notice that, as mentioned, the Monge property implies that the sequence
of children that u acquires in B is contiguous. Moreover, since Dijkstra’s
algorithm finds the distances in monotonically increasing order, and since
we extract a vertex b from M only when b is the minimum in the global
heap Q of Dijkstra’s algorithm, then once b is removed fromM it cannot
acquire a new parent (as that would mean that a shorter path to b was
discovered). These two observations imply that if there are two consecu-
tive triplets (w′, x′, y′) and (w, x, y) such that w′ precedes w in A and if
there is a vertex z between y′ and x in B that was already extracted from
M, then the search for children of u, while scanning u as described above,
never proceeds beyond (w′, x′, y′). For an example consider the scan of u
in Figure 9.3. Following this scan u acquires the children of z from one of
the two triplets of z, the child of y, and two out of the four children of x.
Since v and w have already been deleted, then u cannot acquire children
preceding v or following w.

Let x (resp., y) be the first (resp., last) child of u in B, as obtained in
the preceding step. The algorithm removes from T all triplets containing
vertices between x and y, and removes from QB the elements contributed
by these triplets. Let (a, b1, b2) be the removed triplet that contains x. If
x 6= b1 then the algorithm creates a new triplet to (a, b1, z1) where z1 is the
vertex preceding x in B. Similarly, let (a′, b′1, b

′
2) be the removed triplet

that contains y. If y 6= b′2 the algorithm creates a new triplet (a′, z2, b′2)
where z2 is the vertex following y in B. The algorithm creates a new triplet
(u, x, y) and inserts into T the triplets (a, b1, z1), (u, x, y), and (a′, z2, b′2)
in this order. Finally, it updates the vertices of B that these new triplets
contribute to QB . It finds these vertices by a range minimum query in the
range minima data structure of the appropriate row of M .

124 CHAPTER 9. SHORTEST PATHS IN DENSE DISTANCE GRAPHS

9.4.1 Analysis

An elementary implementation of a range-minimum data structure using bal-
anced binary trees requires space and construction time that are linear in the
number of entries of M , namely O(n2), and answers range-minimum queries in
O(log n) time. Such a data structure can be constructed at the time the matrix
M is constructed (i.e., when computing the dense distance graph), and be given
as input to the Monge heap. Alternatively, one may use the Monge submatrix
range-minimum data structure of Kaplan et al. [Kaplan et al., 2012], which can
be requires O(n log n) construction time and space, and answers range-minimum
queries in O(log n) time.

Clearly, FR-FindMin() takesO(1) time. We next argue that FR-ExtractMin()
takes O(log n) (worst-case) time and FR-Activate() takes O(log n) amortized
time: Both FR-ExtractMin() and FR-Activate() insert a constant number
of new triplets to T in O(log n) time, make a constant number of range-minimum
queries in O(log n) time, and update the representatives of the new triplets in
the heap QB in O(log n) time. FR-Activate(u, d), however, may traverse
many triplets to identify the children of u, remove these triplets from T and re-
move their representatives from QB . Since all except at most two of the triplets
that it traverses are removed, we can charge their traversal and removal to their
insertion in a previous FR-ExtractMin or FR-Activate.

9.5 Chapter Notes

The algorithm in this chapter is due to Fakcharoenphol and Rao [Fakcharoenphol and Rao, 2006].
It has been used creatively and slightly extended in many subsequent works, e.g.,
the minimum-cut oracle of Borradaile et al [Borradaile et al., 2010], the fast
minimum-cut of Italiano et al [Italiano et al., 2011], maximum flow with multi-
ple sources and sinks [Borradaile et al., 2011], and distance oracles [Fakcharoenphol and Rao, 2006,
Cabello, 2012, Mozes and Sommer, 2012, Kaplan et al., 2012]. For a detailed
treatment of the generalization of the algorithm to work on r–divisions with a
constant number of holes, as well as for the Monge range-minimum query used
by the algorithm, see the journal version of [Kaplan et al., 2012].

