
Chapter 3

Elementary graph theory

3.1 Spanning forests and trees

An edge subgraph of G that has no undirected cycles is called a forest of G, and
is called a tree of G if it is connected. A forest is a disjoint union of trees.

A forest F of G is a spanning forest if every pair of vertices that are connected
in G are also connected in F . A spanning forest that is a tree is called a spanning
tree.

Let F be a spanning forest of G. An edge of G is a tree edge (or tree arc)
with respect to F if e belongs to F , and otherwise is a nontree edge (or arc).

Lemma 3.1.1. If F is a spanning forest, |E(F )| = |V (F )| � (F ).

Lemma 3.1.2. Suppose F is a forest of G, and uv is an edge in E(G) � E(F )
such that u and v are not connected in F . Then F [ {uv} is a forest.

Proof. Let F 0 = F [ {uv}, and suppose F 0 has a simple cycle C. Then C must
include the edge uv, for otherwise C is a cycle in F . But C � {uv} is a path in
F connecting u and v, a contradiction.

We say an edge-subgraph F of G is a spanning forest if every pair u, v of
vertices that are connected in G are also connected in F . Note that in this case
(F ) = (G). If G is connected then a spanning forest is a tree, so we call it a
spanning tree of G.

Corollary 3.1.3 (Matroid property of forests). For any forest F of G, there
exists a set M of edges in E(G) � F such that F [ M is a spanning forest of G.

Corollary 3.1.4. If F is a forest of G and |F | = |V (G)| � 1 then F is a
spanning tree of G.

Proof. By Corollary 3.1.3, there exists a set M of edges in E(G) � F such that
F [ M is a spanning forest of G. By Lemma 3.1.1,

|V (G)| � (G) = |F | + |M |
= |V (G)| � 1 + |M |
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Figure 3.1: A graph is shown; the dashed edges form a cut.

so 1�|M | = (G). Since (G) � 1, we can infer that |M | = 0 and (G) = 1.

3.1.1 Nontree edges and fundamental cycles

Let G be a graph, and let F be a spanning forest of G. For a dart d of an
nontree edge, there is a simple head(d)-to-tail(d) path d1 · · · dk of darts in G
whose edges belong to F . Write d0 = d so d0 · · · dk is a simple cycle Ce of darts,
called the fundamental cycle of d with respect to F . For an arc e of E(G) � F ,
we define the fundamental cycle of e to be the fundamental cycle of the primary
dart (e, +1).

3.2 Cuts

3.2.1 (Undirected) cuts

For a graph G and a set S of vertices of G, we define �G(S) to be the set of
edges having one endpoint in S and one endpoint not in S. We say a set of
edges of G is a cut of G if it has the form �G(S).

3.2.2 (Directed) dicuts

We define �+G(S) to be the set of arcs whose tails are in S and whose heads are
not in S. Note that �+G(S) is a subset of �G(S). A set of arcs of G is a directed
cut (a.k.a. dicut) if it has the form �+G(S).

3.2.3 Dart cuts

For a set S of vertices of G, we define ~�G(S) to be the set of darts whose tails

are in S and whose heads are not in S. Note that ~�G(S) has one dart for each

edge in �G(S). We refer to ~�G(S) as the dart boundary of S in G.

3.2.4 Simple cuts

Let G be a graph, let K be a connected component of G, and let S be a subset
of the vertices of K. We say a cut �G(S) or a dart cut ~�G(S) is a simple cut if
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S is connected in G and V (K) � S is connected in G. (Some authors have used
the term bond for this concept.)

Note that a cut in G is minimal among nonempty cuts i↵ it is a simple cut.
Any cut can be written as a disjoint union of simple cuts.

Vertex cuts Now let S be a set of edges. We define @G(S) to be the set of
vertices v such that at least one edge incident to v is in S and at least one edge
incident to v is not in S. We refer to @G(S) as the vertex boundary of S in G.
A vertex of @G(S) is a boundary vertex of S in G.

Notational conventions We may omit the subscript and write �(S) or �+(S),
etc., when doing so introduces no ambiguity.

For a vertex v, we may write �(v) or ~�(v) to mean �({v}) or ~�({v}).

3.2.5 Tree edges and fundamental cuts

Let G be a graph, and let F be a spanning forest of G. For a tree edge e = u1u2,
let K be the connected component of F that contains e. For i = 1, 2, let

Si = {vertices reachable from ui via edges of F � {e}}

Claim: S1 and S2 form a partition of the vertices of K.

Proof. Let T be the tree connecting the vertices of K. For any vertex v of K,
for i = 1, 2, let Pi be the simple v-to-ui path in T . If e were in neither P1 nor
P2 then P1 � e � rev(P2) would be a simple cycle in T , so e is in one of them,
say P1. Then the prefix of P1 ending just before e is a simple v-to-u2 path not
using e, so v is in S2.

We call ~�G(S1) the fundamental cut of e in G with respect to F . Since S1

and S2 are connected in K, the claim implies the following.

Lemma 3.2.1 (Fundamental-Cut Lemma). For any tree edge e, the fundamen-
tal cut of e is a simple cut.

Lemma 3.2.2. For distinct tree edges e, e0, e0 is not in the fundamental cut of
e.

Problem 3.1. Prove Lemma 3.2.2.

3.2.6 Paths and Cuts

Lemma 3.2.3 (Path/Cut Lemma). Let G be a graph, and let u and v be vertices
of G.

• Dipath/Dicut For a set A of arcs, every u-to-v dipath contains an arc of
A i↵ there is a dicut �+(S) ✓ A such that u 2 S, v 62 S.
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• Path/Cut For a set E of edges, every u-to-v path contains an edge of E
i↵ there is a cut �(S) ✓ E such that u 2 S, v 62 S.

• Dart Path/Dart Cut For a set D of darts, every u-to-v path of darts

contains a dart of D i↵ there is a dart cut ~�(S) ✓ D such that u 2 S, v 62 S.

Proof. We give the proof for the first statement; the proofs for the others are
similar.

Let S be the set of vertices reachable from x via paths that avoid arcs in A.
(only if) Suppose every x-to-y dipath contains an arc of A. Then x 2 S, y 62

S. Let uv be an arc in �+(S). then u 2 S, so there is an x-to-u path P that
avoids arcs in A. On the other hand, v 62 S, so every x-to-v path contains an
arc in A. Consider the path P uv. It is an x-to-v path, so contains some arc in
A, but P has no arcs of A, so uv 2 A.

(if) Suppose there is a dicut �+(S) ✓ A such that x 2 S, y 62 S. Let P be
any x-to-y path, and let v be the first vertex in P that does not belong to S
(there is at least one such vertex, since y 62 S). Let u be the predecessor of v in
P . By choice of v, we know u 2 S. Hence uv 2 �+(S), so uv 2 A.

3.3 Vector Spaces

Dart space Let G = (V, E) be a graph. The dart space of G is RE⇥{±1}, the
set of vectors ↵ that assign a real number ↵[d] to each dart d. For a vector c
in dart space and given a set S of darts, c(S) denotes

P
d2S c[d].

Vertex space The vertex space of G is RV . A vector of vertex space is called
a vertex vector.

Arc space and arc vectors The arc space of G is a vector subspace of the
dart space, namely the set of vectors ↵ in the dart space that satisfy antisym-
metry:

for every dart d,↵[d] = �↵[rev(d)] (3.1)

A vector in arc space is called an arc vector. We will mostly be working with
arc vectors.

⌘(d) For a dart d, define ⌘(d) to be the arc vector such that ⌘(d)[d] = 1 and
⌘(d)[d0] = 0 for all darts d0 such that d0 6= d and d0 6= rev(d).

Fact 3.3.1. The vectors {⌘(ha, +1i) : a 2 E(G)} form a basis for the arc
space.

We extend this notation to sets of darts: ⌘(S) =
P

d2S ⌘(d). Formally, a
vertex v is the set of darts having v as head, so ⌘(v) =

P
d ⌘(d) where the sum

is over those darts whose heads are v.
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The dart-vertex incidence matrix AG For a graph G, we denote by AG

the dart-vertex incidence matrix, the matrix whose columns are the vectors
{⌘(v) : v 2 V (G)}. That is, AG has a row for each dart d and a column for
each vertex v, and the (d, v) entry is 1 if v is the head of d, -1 if v is the tail of
d, and zero otherwise.

3.3.1 The cut space

Let G be a graph. The vector space spanned by the set {⌘(~�G(v)) : v 2
V} is called the cut space of G. To define a basis for this vector space, let
K1, . . . , K(G) be the connected components of G, and let v1, . . . , v(G) be repre-
sentative vertices chosen arbitrarily from the vertex sets of the components. Let
CUTG = {⌘(~�G(v)) : v 2 V�{v̂1, . . . , v̂(G)}}. Note that |CUTG| = |V|�(G).
Clearly each vector in CUTG belongs to the cut space. We will eventually prove
that CUTG is a basis for the cut space. (For brevity, we may omit the subscript
when the choice of graph G is clear.)

Lemma 3.3.2. The vectors in CUT are linearly independent, so span(CUT)
has dimension |CUT|.

Proof. Suppose  =
P

v  v⌘(v) is a nonzero linear combination of vectors in
CUT. We show that the sum is not the all-zeroes vector. Let H be the subgraph
induced by the set of vertices v such that  v 6= 0. Let K be a connected
component of H. Since K is a proper subgraph of some connected component
K 0 of G itself (K includes no representative vertex v̂i), there is some dart uv
such that u belongs to K and v does not. If  v were nonzero then uv would be
in H, so  v = 0. This implies that the component of  corresponding to uv is
nonzero.

3.3.2 The cycle space

We turn to another vector space. We define the cycle space of G to be the
orthogonal complement of the cut space in the arc space. That is, the cycle
space is

{✓ 2 arc space : ✓ · ⌘(v) = 0 for all v 2 V (G)} (3.2)

It follows via elementary linear algebra that the dimension of the cycle space
plus the dimension of the cut space is |E|.

To define a basis for the cycle space, consider G as an undirected graph, and
let F be a spanning forest. For each arc e in E(G) � F (i.e., each nontree arc),
we use Ce to denote the fundamental cycle of e with respect to F (defined in
Section 3.1.1). We define �F (e) to be ⌘(Ce) . We may omit the subscript F
when it is clear which forest is intended.

We will show that the vectors in the set CycF = {�F (e) : e 2 E � F} are
independent and belong to the cycle space. Note that |CycF | = |E(G)| � |F |.
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v

Figure 3.2: Consider a walk W and a vertex v. The darts of W that enter
v are matched up with darts of W that leave v. In the vector ⌘(v), darts
leaving v are represented by!+1, and darts entering v are represented by -1, so
⌘(v) · ⌘(W ) = 0.

Lemma 3.3.3. The vectors in CycF are independent, so span(CycF ) has di-
mension |CycF |.

Proof. For any e 2 E(G) � F , the only vector in CycF with a nonzero entry in
the position corresponding to e is �F (e), so this vector cannot be written as a
linear combination of other vectors in CycF .

The following lemma partially explains the name of the cycle space.

Lemma 3.3.4. If W is a closed walk then ⌘(W ) is in the cycle space.

The proof is illustrated in Figure 3.2.

Proof. Let v be a vertex. For each dart d in W whose tail is v, v is the head of
the predecessor of d in W , and for each dart d in W whose head is v, v is the
tail of the successor of d. This shows that the number of darts of W whose tail
is v equals the number of darts of W whose head is v, proving ⌘(v) · ⌘(W ) = 0.
This shows that ⌘(W ) lies in the cycle space as defined in 3.2.

Corollary 3.3.5. The vectors in CycF belong to the cycle space so span(CycF )
has dimension at most that of the cycle space.

Proof. Every vector �F (e) in CycF is equal to ⌘(Ce) where Ce is a cycle, so by
Lemma 3.3.4 belongs to the cycle space.

3.3.3 Bases for the cut space and the cycle space

Now we put the pieces together.

Corollary 3.3.6. CUT is a basis for the cut space, and CycF is a basis for
the cycle space.

Proof. By Lemma 3.3.2, for some nonnegative integer j1,

dim(cut space) = j1 + |CUT| (3.3)

= j1 + |V| � (G) (3.4)
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By Corollary 3.3.5 and Lemma 3.3.3, for some nonnegative integer j2,

dim(cycle space) = j2 + |CycF | (3.5)

= j2 + |E| � |F | (3.6)

Since the cut space and the cut space are orthogonal,

|E| = dim(arc space) (3.7)

= dim(cut space) + dim(cycle space) (3.8)

= j1 + |V| � (G) + j2 + |E| � |F | (3.9)

= j1 + |V| � (G) + j2 + |E| � (|V | � (G)) (3.10)

= j1 + j2 + |E| (3.11)

so j1 = 0 and j2 = 0, proving that CUT is a basis for the cut space and CycF

is a basis for the cycle space.

We call CycF the fundamental-cycle basis with respect to F .

3.3.4 Another basis for the cut space

Let F be a spanning forest of G. Consider the set of vectors

{⌘(fundamental cut of e with respect to F ) : e 2 F}

Clearly each vector is in the cut space. Since distinct tree edges are not in each
other’s fundamental cuts (Lemma 3.2.2), these vectors are linearly independent.
The set consists of |F | vectors. Since F is a spanning forest of G, |F | = |V (G)|�
(G). The set of vectors therefore has the same cardinality as |CUT|. It follows
that this set of vectors is another basis for the cut space, and we call it the
fundamental-cut basis with respect to F .

3.3.5 Conservation and circulations

Let � be an arc vector. We can interpret � as a plan for transporting amounts
of some commodity (e.g. oil) along darts of the graph. If f [d] > 0 for some
dart d then we think of �[d] units of the commodity being routed along dart d.
Because � satisfies antisymmetry (3.1), �[rev(d)] < 0 in this case.

The (net) outflow of � at a vertex v is defined to be
P

{�[d] : d 2 ~�(v)}
This is the net amount of the commodity that leaves v (see Figure 3.3).

We say � satisfies conservation at v if the net outflow at v is zero.
It follows from (3.2) that an arc vector that satisfies conservation at every

vertex belongs to the cycle space. A vector ✓ in the cycle space of G is called
a circulation of G. We can interpret a circulation as a plan for transporting
a commodity through the graph in such a way that no amount is created or
consumed at any vertex. Circulations will play an essential role in our study of
max-flow algorithms for planar graphs.
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Figure 3.3: The two darts that enter v from its left carry positive amounts (3
and 2) of the commodity. The three darts that leave v to its right carry positive
amounts (3, 1, and 4). The net outflow is 3 + 1 + 4 � (3 + 2) = 3.Because of
antisymmetry, a simpler way to calculate net outflow at v is to sum the values
assigned to all darts leaving v: (�3) + (�2) + 3 + 1 + 4 = 3.

3.4 Embedded graphs

In solving the problem of the bridges of Königsberg, Euler discovered the power
of abstracting a topological structure, a graph, from an apparently geometric
structure. Perhaps it was this experience that enabled him to make another
discovery. Polyhedra had been studied in ancient times but nobody seems to
have noticed that every three-dimensional polyhedron without holes obeyed a
simple relation:

n � m + � = 2

where n is the number of vertices, m is the number of edges, and � is the number
of faces. This equation is known as Euler’s formula.1

This equation does not describe the geometry of a polyhedron; in fact, one
can stretch and twist a polyhedron, and the formula will remain true (though
the edges and faces will get distorted). We presume it was Euler’s ability to
think beyond the geometry that enabled him to realize the truth of this formula.

Planar embedded graphs are essentially the mathematical abstraction of our
stretched and twisted polyhedra. Turning Euler’s observation on its head, we
will end up defining planar embedded graphs as those embedded graphs that
satisfy Euler’s formula. The traditional definition of planar embedded graphs is
geometric. Our definition of embedded graphs will not involve geometry at all.
Instead, we will use the notion of a combinatorial embedding. The advantage of
this approach is that it’s easier to prove things about combinatorial embeddings.
For that, we need to review permutations.

Permutations For a finite set S, a permutation on S is a function ⇡ : S �!
S that is one-to-one and onto. That is, the inverse of ⇡ is a function. A
permutation ⇡ on S is a cycle (sometimes called a cyclic permutation) if S can
be written as {a0, a1, . . . , ak�1} such that ⇡(ai) = a(i+1) mod k for all 0  i <
k. According to the traditional notation for a cyclic permutation, we would
then write ⇡ as (a0 a1 . . . ak�1). This notation is not unique; for example,
(a1 a2 . . . ak�1 a0) represents the same permutation. The length of the cycle
is defined to be k.

1
There is another “Euler’s formula,” eix = cos x + i sin x.
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Figure 3.4: An embedded graph is illustrated. The permutation cycle associated
with the top-left vertex is (d� e� c+), and the one associated with the bottom-
right vertex is (b� e+ a+). This drawing reflects the convention that the cycle
associated with a vertex represents the counterclockwise arrangement of darts
around the vertex. In the drawing on the right, the individual darts are shown.
This drawing is in accordance with the US “rules of the road”: if the two darts
are interpreted as two lanes of tra�c, one travels in the right lane.

Orbits The orbits of a permutation ⇡ are the equivalence classes under the
equivalence relation where c ⇠ d if there exists k such that ⇡k(c) = d. Here the
exponent indicates k-fold composition, so c ⇠ d if one can get from c to d by
some number of applications of ⇡.

Decomposition of a permutation into cyclic permutations For any
orbit of a permutation ⇡, the restriction of ⇡ to that orbit is a cyclic permutation.
It follows that any permutation can be decomposed uniquely into nonempty
cyclic permutations.

3.4.1 Embeddings

Here’s the idea. Suppose we start with an embedding of a graph in the plane.
For each vertex, walk around the vertex counterclockwise and you will encounter
edges in some order, ending up in the same place you started. The embedding
thus defines a cyclic permutation (called a rotation) of the edges incident to the
vertex. There is a sort of converse: given a rotation for each vertex, there is an
embedding on some orientable surface that is consistent with those rotations.

Embedding For a graph G = (V, E), an embedding of G is a permutation ⇡
of the set of darts E ⇥ {±1} whose orbits are exactly the parts of V . Thus ⇡
assigns a cyclic permutation to each part of V , i.e. each vertex. For each vertex
v, we define ⇡|v to be the cyclic permutation that is the restriction of ⇡ to v.

Our interpretation is that ⇡|v tells us the arrangement of darts counterclockwise around
v in the embedding. Such an interpretation is useful in drawings of embedded graphs,
e.g. the drawing on the left of Figure 3.4.
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The drawing on the right of Figure 3.4 should not be considered a drawing of an
embedded graph. This drawing shows the darts corresponding to each arc if the
embedded graph on the left.

We use V (⇡) to denote the set of orbits of ⇡.

Embedded graph We define the pair G = (⇡, E) to be an embedded graph. To
be consistent with the definitions of unembedded graphs, we define E((⇡, E)) =
E and V ((⇡, E)) = V (⇡). We also define ⇡((⇡, E)) = ⇡. The underlying graph
of an embedded graph G is defined to be the (unembedded) graph (V(G), E(G)).

~�G(S) For an embedded graph G and a set S of vertices, ~�G(S) is a permutation
on the set of darts whose heads are in S and whose tails are not in S....

Faces To define the faces of the embedded graph, we define another permu-
tation dual(⇡) of the set of darts by composing rev with ⇡ :

dual(⇡) = rev � ⇡

Then the faces of the embedded graph (⇡, E) are defined to be the orbits of
dual(⇡). We typically denote dual(⇡) by ⇡⇤.

Consider, for example, the embedded graph of Figure 3.4.

⇡⇤[a�] = rev(⇡[a�])

= rev(d+)

= d�

⇡⇤[d�] = e+

⇡⇤[e+] = a�

so one of the faces is {a�, d�, e+}.
Note that, in the figure, the face’s cyclic permutation of darts traces out

a clockwise cycle of darts such that no edges are embedded within the cycle.
Consider, though, the face consisting of {a+, b+, c+, d+}. In the drawing, the
darts of this face appear to form a counterclockwise cycle, and the rest of the
graph is embedded within this cycle. According to traditional nomenclature for
planar embedded graphs, this face is called the infinite face because the edge-
free region it bounds is infinite. However, imagine the same embedding on the
surface of a sphere; there is no infinite face. All faces have equal status.

Since the combinatorial definition of embedded graphs and faces does not
distinguish any faces, it is often convenient to imagine that it describes an
embedding on a sphere (or other closed, orientable surface). However, for some
purposes, it is convenient to distinguish one face, and designate it as the infinite
face. Any face of the embedded graph can be chosen to be the infinite face, and
this freedom is exploited in the design of some algorithms.
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Remark 3.4.1. In the traditional, geometric definition of embedded graphs,
one considers the set of points that are not in the image of the embedding; a
face is a connected component of this set of points. This definition works for
connected graphs. However, for disconnected graphs, this definition leads to a
face being in a sense shared by two components of the graph. Such a face has
a disconnected boundary. This is a flawed definition; we later mention a couple
of bad consequences of adopting this definition.

3.4.2 Euler characteristic and genus

Let n, m, and � be the number of vertices, edges, and faces of an embedded
graph. The Euler characteristic of the embedding is n � m + �. The genus of
the embedding is the integer g that satisfies the formula

n � m + � = 2 � 2g

As we discuss in Chapter 4, an embedding is planar if its genus is 0.

3.4.3 Remark on the connection to geometric embeddings

From a combinatorial embedding, one can construct a surface and an embedding
of the underlying graph in that surface. For each face (d1 . . . dr), construct
an r-sided polygon and label the sides d1, . . . , dr in clockwise order. Now we
have one polygon per face. For each edge e, glue together the two polygon
sides labeled with the two darts of e. The result can be shown to be a closed,
orientable surface. The graph is embedded in it.

Conversely, given any embedding of a graph G onto an closed, orientable
surface, define ⇡ by the rotations at the vertices. Then the embedding defined
by the gluing construction is homeomorphic to the given embedding. Thus, up
to homeomorphism the rotations determine the embedding. The proof of this
theorem is very involved, and won’t be covered here. Since for the purpose for
proofs we use combinatorial embeddings rather than geometric embeddings, the
theorem will not be needed.

3.4.4 The dual graph

For an embedded graph G = (⇡, E), the dual graph (or just dual) is defined to
be the embedded graph dual(G) = (dual(⇡), E). We typically denote the dual
of G as G⇤.

In relation to the dual, the original graph G is called the primal graph (or
just the primal). Note that the vertices of G⇤ are the faces of G. It follows from
the following lemma that the faces of G⇤ are the vertices of G.

The dual of the dual is the primal:

Lemma 3.4.2. dual(dual(G)) = G.
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Figure 3.5: The primal and the dual are shown together. The arcs and vertices
of the primal are drawn thick and solid and blue; the arcs and vertices of the
dual are drawn with thin double lines in red.

Problem 3.2. Prove Lemma 3.4.2.

Formally, there is no need to say more about the dual. Each orbit of ⇡⇤ is a subset of
darts and so can be interpreted as a vertex, so (⇡⇤, E) is an embedded graph. However,
for the sake of intuition, it is often helpful to draw the dual of an embedded graph
superimposed on a drawing of the primal, as shown in Figure 3.5. Each dual vertex
is drawn in the middle of a face of the primal, and, for each arc a of the primal, the
corresponding arc of the dual is drawn so that it crosses a at roughly a right angle.
We often adopt the convention of drawing G = (⇡, E) in such a way that the counter-
clockwise order of darts about a vertex corresponds to their order in the corresponding
permutation cycle of ⇡. That is, for a dart d with tail v, the next counterclockwise
dart with tail v is ⇡[d].
However, when we draw the dual superimposed on the primal as we have described,
the ordering of darts in a permutation cycle corresponds in the drawing to a clockwise
arrangement.

Face vectors Because the faces of G are the vertices of the dual G⇤, a vertex
vector of G⇤ is an assignment of numbers to the faces of G. We therefore refer
to it as a face vector of G.

3.4.5 Connectedness properties of embedded graphs

Lemma 3.4.3. For any face f of any embedded graph G, the darts comprising
f are connected.

Proof. Let d and d0 be darts of f . ⇡⇤|f = (d0 d1 . . . dk�1) where d0 = d
. Suppose di = d0. We claim that d0 d1 d2 . . . di is a walk in G, which
proves the lemma. For j = 1, 2, . . . , i, we have dj = ⇡⇤(dj�1). By definition of
⇡⇤, rev(dj) = ⇡(dj�1), so dj�1) and rev(dj) have the same head in G. Thus
headG(dj�1) = tailG(dj).
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Corollary 3.4.4. If d and d0 are connected in G then they are connected in G⇤.

Proof. Let d0 d1 d2 . . . dk be a walk in G. For i = 1, 2, . . . , k, headG(di�1) =
tailG(di), so tailG(rev(di�1) = tailG(di), so rev(di�1) and di are in the same or-
bit of ⇡. Hence rev(di�1) and di belong to the same face of ⇡⇤. By Lemma 3.4.3,
rev(di�1) and di are connected in G⇤, so di�1 and di are connected in G⇤.

Corollary 3.4.5 (Connectivity Corollary). For any embedded graph G, a set
of darts forms a connected component of G i↵ the same set forms a connected
component in G⇤.

3.4.6 Cut-edges and self-loops

Lemma 3.4.6. If e is not a self-loop in an embedded graph G then e is not a
cut-edge in G⇤.

Proof. Let f be a face of G⇤ containing one of the two darts of e. Since e is not
a self-loop in G, f does not contain the other dart of e. Therefore e is not a
cut-edge in G⇤.

We shall show later (in Corollary 4.6.3) that the converse of Lemma 3.4.6
holds in planar embedded graphs. However, more generally....

Problem 3.3. Show that the converse of Lemma 3.4.6 does not hold.

3.4.7 Deletion

Deleting a dart d̂ from a permutation ⇡ of D(G) is obtaining the permutation
⇡0 of D(G) � {d̂} defined as follows.

⇡0[d] =

⇢
⇡[⇡[d]] if ⇡[d] = d̂
⇡(d) otherwise

Deleting an edge ê consists of deleting the two darts of ê (in either order).
Let ⇡0 be the permutation obtained from ⇡ by deleting an edge ê, and let

G0 = (⇡0, E � {ê}) be the corresponding embedded graph. It is easy to check
that the orbits of ⇡0 are the same as the orbits of ⇡ except that darts of ê have
been removed (possibly some orbits go away). Hence the underlying graph of
G0 is the graph obtained by deleting ê from the underlying graph of G. We
write G � ê for the embedded graph obtained by deleting ê.

3.4.8 Compression (deletion in the dual) and contraction

Lemma 3.4.7. For an embedded graph G, if e is not a self-loop then the un-
derlying graph of dual(G⇤ � e) is the graph obtained from the underlying graph
of G by contracting e.
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Figure 3.6: The primal graph G is shown in blue, and the dual G⇤ is shown in
red. The edge e to be deleted from G⇤ has two darts, a0 and b0, which are in
di↵erent faces of the dual G⇤. When e is deleted, the two faces merge into one.

Proof. The proof is illustrated in Figure 3.6. Let u and v be the endpoints of
e. Let a0, . . . , ak be the darts outgoing from u, and let b0, . . . , b` be the darts
outgoing from v, where a0 and b0 are the darts of e. Since e is not a self-loop,
a0 does not occur among the bi’s and b0 does not occur among the ai’s.

In G⇤, u is a face with boundary (a0 a1 · · · ak) and v is a face with boundary
(b0 b1 · · · b`). Let G⇤0 = (⇡⇤0, E � {e}) be the graph obtained from G⇤ by
deleting e.

dual(⇡⇤0)[d] = ⇡⇤0 � rev(d)

=

⇢
⇡⇤[⇡⇤[rev(d)]] if ⇡⇤[rev(d)] is deleted
⇡[d] otherwise

(3.12)

For which two darts d is ⇡⇤[rev(d)] deleted? Since ⇡⇤[rev(d)] = ⇡[d], the two
darts are ⇡�1[a0], which is ak, and ⇡�1[b0], which is b`.

Rewriting Equation 3.12, we obtain

dual(⇡⇤0)[d] =

8
<

:

⇡⇤[a0] if d = ak

⇡⇤[b0] if d = b`
⇡[d] otherwise

=

8
<

:

b1 if d = ak

a1 if d = b`
⇡[d] otherwise

Thus dual(⇡⇤0) has a permutation cycle (a1 a2 · · · ak b1 b2 · · · b`). This
permutation cycle defines the vertex obtained by merging u and v and removing
the edge e. All other vertices are unchanged. This shows that the underlying
graph is that obtained by contracting e.

In view of Lemma 3.4.7, we define compression of an edge e in an embedded
graph G to be deletion of e in the dual G⇤. We denote this operation by G/e.
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That is, G/e = dual(G⇤ � e). Compression of an edge of an embedded graph
yields an embedded graph.

In the case when e is not a self-loop, we refer to the operation as contraction
of e.

What about the case of compression when e is a self-loop? We discuss this
later when we study planar graphs.

3.5 Chapter Notes

The idea of a combinatorial embedding was implicit in the work of He↵ter
(1891). Edmonds (1960) first made the idea explicit in his Master’s thesis, and
Youngs (1963) formalized the idea. A combinatorial embedding is sometimes
called a rotation system.
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Problem 3.4. 1. Write a combinatorial embedding corresponding to the fol-
lowing graph G = (A,⇡)

a

b

c

d

e

f

g

h

2. Write ⇡⇤

3. Write the embedding ⇡0 of the graph obtained when deleting the arc c and
contracting the arc e. Also write the dual embedding ⇡0⇤.

4. What is the genus of (A0,⇡0). Is it planar?

5. Draw a geometric embedding of (A0,⇡0).

Problem 3.5. Construct a (combinatorially) embedded graph that is not planar.
Use the minimum number of nodes and the minimum number of edges.
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