
Chapter 7

Multiple-source shortest
paths

7.1 Slack costs, relaxed and tense darts, and
consistent price vectors

7.1.1 Slack costs

Recall that, for a graphG, we use AG to denote the dart-vertex incidence matrix.
Let ρ be a vertex vector. The slack cost vector with respect to ρ is the vector

cρ = c−AGρ. That is, the slack cost of dart d with respect to ρ is

cρ[d] = c[d] + ρ[tail(d)]− ρ[head(d)]

In this context, we call ρ a price vector.
By a telescoping sum, we obtain

Lemma 7.1.1. For any path P , cρ(P ) = c(P ) + ρ[start(P )]− ρ[end(P )].

Corollary 7.1.2 (Slack costs preserve optimality). For fixed vertices s and t,
an s-to-t path is shortest with respect to cρ iff it is shortest with respect to c.
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Figure 7.1: This figure shows how a price vector changes lengths of a path.
Assume for simplicity that the path’s start and end each have price zero. Then
the length of the path does not change, despite the changes in the lengths of
the darts.
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Corollary 7.1.2 is very useful because it alllows us to transform a shortest-
path instance with respect to one cost vector, c, into a shortest-path instance
with respect to another, cρ. This transformation is especially useful if the new
costs are nonnegative.

7.1.2 Relaxed and tense darts

Recall from Section 6.1 that a dart d is relaxed with respect to c and ρ if

ρ[tail(d)] + c[d]− ρ[head(d)] ≥ 0 (7.1)

and tense otherwise. Note that the quantity on the left-hand side is the slack
cost of d with respect to ρ. Thus a dart is relaxed if its slack cost is nonnegative
and tense if its slack cost is negative.

A dart d is tight if Inequality 7.1 holds with equality, i.e. if its slack cost is
zero.

7.1.3 Consistent price vectors

A price vector is consistent with respect to c if the slack costs of all darts are
nonnegative. That is, ρ is a consistent price vector if every dart is relaxed with
respect to ρ.

Following up on the discussion in Section 7.1.1, a consistent price vector al-
lows us to transform a shortest-path instance with respect to costs some of which
are negative into a shortest-path instance in which all costs are nonnegative.

Now we discuss a way to obtain a consistent price vector. For a vertex r, we
say that a price vector ρ is the from-r distance vector with respect to c if, for
every vertex v, ρ[v] is the minimum cost with respect to c of a r-to-v path of
darts.

Lemma 7.1.3. Suppose ρ is the from-r distance vector with respect to c for
some vertex r. Then ρ is a consistent price function, and every minimum-cost
path starting at r consists of darts that are tight with respect to ρ.

Problem 7.1. Prove Lemma 7.1.3.

One motivation for finding a consistent price vector is to transform a shortest-
path instance into a simpler shortest-path instance; however, such a transfor-
mation seems useless if, as suggested by Lemma 7.1.3, carrying it out requires
that we first solve the original shortest-path instance! Nevertheless, the trans-
formation can be quite useful:

• Having distances from one vertex r simplify the computation of distances
from other vertices (e.g. the all-pairs-distances algorithm of [Johnson, 1977]).

• An algorithm can maintain a price function and preserve its consistency
over many iterations (e.g. the min-cost flow algorithm of [?]).
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Problem 7.2. 1. Show that if P is a minimum-cost u-to-v path w.r.t. costs
c, then it is also a minimum-cost u-to-v path w.r.t. slack costs cρ. What
is the difference between the cost of P w.r.t. c and w.r.t. cρ?

2. Suppose P1 and P0 are both u-to-v paths, where every dart of P1 is tight
(w.r.t. ρ), and where P0 is a minimum-cost u-to-v path (w.r.t. c). Prove
that every dart of P0 is also tight (w.r.t. ρ).

3. Let G be a directed sparse graph with dart lengths (i.e., |E(G)| =
O(|V (G)|). Use theproperties of reduced costs to compute the distance
between every pair of vertices in G in O(|V (G)|2 log |V (G)|) time. This is
known as Johnson’s algorithm [Johnson, 1977]

Lemma 7.1.3 suggests a way of using a price vector to certify that a tree is
a shortest-path tree.

Lemma 7.1.4. Let ρ be a price vector that is consistent with respect to c. If T
is a rooted spanning tree every dart of which is tight then T is a shortest-path
tree with respect to c.

Proof. With respect to the slack costs, every dart has nonnegative cost, and
every path in T has zero cost, so every path in T is a shortest path with respect
to cρ and hence (by Corollary 7.1.2) with respect to c.

Lemma 7.1.3 shows that distances form a consistent price function. However,
distances do not exist if there are negative-cost cycles. The following lemma
states that, in this case, consistent price functions also do not exist.

Lemma 7.1.5. If ρ is a consistent price vector for G with respect to c then G
contains no negative-cost cycles.

Proof. By a telescoping sum, the slack cost of any cycle C equals its original
cost. If ρ is a consistent price vector then every dart of d has nonnegative slack
cost, so C has nonnegative slack cost and hence nonnegative cost.

7.2 Specification of multiple-source shortest paths

In this chapter, we study a problem called the multiple-source shortest paths
(MSSP).

• input: a directed planar embedded graph G with a designated infinite
face f∞, a vector c assigning lengths to darts, and a shortest-path tree T0
rooted at one of the vertices of f∞.

• output: a representation of the shortest-path trees rooted at the vertices
on the boundary of f∞.
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Our goal is to give an algorithm that solves this problem in O(n log n) time
where n is the number of vertices (assuming no parallel edges). There is an
obvious obstacle: each shortest-path tree consists of n − 1 edges, so explicitly
outputting one for each of the possibly many vertices on the boundary of f∞
could take far more than Ω(n log n) time.

To resolve this difficulty, we use a simple implicit representation of the
shortest-path trees. Let d1 · · · dk be the cycle of darts forming the boundary
of f∞

d1
d2

d3d11

d12

where tail(d1) is the root of the given shortest-path tree T0. For i = 1, . . . , k, let
Ti be the shortest-path tree rooted at head(di). We assume that each shortest-
path tree Ti includes only finite-length darts. The algorithm will describe the
changes required to transform T0 into T1, the changes needed to transform T1
into T2, . . . , and the changes needed to transform Tk−1 into Tk. We will show
that the total number of changes is at most the number of finite-length darts of
G.

7.2.1 Pivots

The basic unit of change in a rooted tree T , called a pivot, consists of ejecting
one dart d− and inserting another dart d+ so that the result is again a rooted
tree. A pivot is specified by the pair (d−, d+) of darts.1

Transforming T from Ti−1 to Ti consists of

• a special pivot that ejects the dart whose head is head(di), and inserts the
dart rev(di) (now T is head(di)-rooted), and

• a sequence of ordinary pivots each of which ejects a dart d′ and inserts a
dart d̂ with the same head.

For i = 1, . . . , k, the MSSP algorithm outputs the sequence of pivots that
transform Ti−1 into Ti. We shall show that the amortized time per pivot is
O(log n). The number of special pivots is k. In the next section, we show that
the number of ordinary pivots is at most the number of finite-length darts. It
follows that the running time is O(n log n).

1The term pivot comes from an analogy to the network-simplex algorithm.
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7.3 Contiguity property of shortest-path trees
in planar graphs

In this section we prove a contiguity property for the trees Ti that is crucial
in bounding the number of steps of the MSSP algorithm. To facilitate the
exposition we first consider the non-degenerate case, where shortest paths are
unique. We analyze the degenerate case in section ??. The same arguments
are used in the analysis of the single-source max-flow algorithm presented in
Chapter 10.

Let G be a graph, let c be a dart vector, and let d be a dart. For a vertex
u, we say d is u-tight with respect to c if d is tight with respect to the from-u
distance vector with respect to c.

Lemma 7.3.1. There is a u-rooted shortest-path tree containing d iff d is u-
tight.

Problem 7.3. Prove Lemma 7.3.1 using Lemma 7.1.4.

Note that our unique shortest-paths assumption implies that a dart is u-tight
if and only if is in the shortest path tree rooted at u.

Lemma 7.3.2 (Consecutive-Roots Lemma). Let G be a planar embedded graph
with infinite face f∞, and let c be a dart vector. Let (d1 d2 · · · ) be the cycle of
darts forming the boundary of f∞.

For each dart d, the set
{i : d is in Ti} (7.2)

forms a consecutive subsequence of the cycle (1 2 · · · ).

Proof. Let v be a vertex. Let T ′ be the v-rooted shortest-path tree using darts in
the reverse direction. (Formally, we use the costs c′ defined by c′[d] = c[rev(d)]).
For each vertex r on f∞, if d is the last dart in the shortest r-to-v path, then the
first dart in the v-to-r path in T ′ is rev(d). That is, r is a descendent of tail(d)
in T ′. Since the tree T ′ does not cross itself, the set {ri ∈ f∞ : ri ∈ T ′tail(d)} is
a consecutive subsequence of the boundary of f∞. The lemma follows.

Corollary 7.3.3. The number of pivots required to transform shortest-path tree
Ti−1 into Ti, summed over all i, is at most the number of finite-length darts.

7.4 The abstract MSSP algorithm

We present an abstract description of an algorithm for MSSP. Later we will
present a more detailed description.

def MSSP(G, f∞, T ):
pre: T is a shortest-path tree rooted at a vertex of f∞
let (d1 d2 · · · ds) be the darts of f∞, where tailG(d1) is the root of T
for i := 1, 2, . . . , s,
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T is a tail(di)-rooted shortest-path tree
are not(Ai, Bi) :=ChangeRoot(T, di) transform T to a head(di)-rooted

shortest-path tree by removing dart-set Ai and adding Bi
the darts of Ai are not head(di)-tight

return (A1, . . . , As) and (B1, . . . , Bs)

The algorithm calls the subroutine ChangeRoot, for each dart di of f∞ in
order. ChangeRoot transforms Ti−1 into Ti. It returns two sets of darts; the
set Ai of darts in Ti−1 but not in Ti, and the set Bi of darts in Ti but not in
Ti−1.

7.4.1 Analysis of the abstract algorithm

Lemma 7.4.1. For each dart d, there is at most one iteration i such that
d ∈ Ai.
Proof. By the Consecutive-Roots Lemma (Corollary 7.3.2), there is at most one
integer i such that d is in Ti but is not in Ti+1.

Corollary 7.4.2.
∑
i |Ai| is at most the number of darts.

7.5 ChangeRoot: the inner loop of the MSSP
algorithm

The procedure ChangeRoot(T, di) called in MSSP consists of a loop, each
iteration of which selects a dart to add to T and a dart to remove from T .
We show later that setting up the loop takes O(log n) time, the number of
iterations is |Ai|, and each iteration takes amortized O(log n) time. The time
for ChangeRoot is therefore O((|Ai|+1) log n). Summing over all i and using
Corollary 7.4.2, we infer that the total time for ChangeRoot and therefore for
MSSP is O(n log n).

tree T ∗, enables the vertex v
In each iteration, the algorithm determines that a dart d̂ not in T must be

added to T . It then pivots d̂ into T , which means

• removing from T the dart whose head is head(d̂) and

• adding d̂ to T .

This operation is called a pivot because it resembles a step of the network-
simplex algorithm.

Conceptually, ChangeRoot is as follows. Let c0 denote the tail(di)-to-
head(di) distance in G. To initialize, ChangeRoot temporarily sets the cost
of the dart rev(di) to −c0. It then performs a special pivot, removing from T
the dart whose head is head(di), and inserting rev(di) into T . It then gradually
increases the cost of rev(di) to its original cost while performing ordinary pivots
as necessary to maintain that T is a shortest-path tree.
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Figure 7.2: The two trees differ by a single pivot.

After the initialization, the procedure uses a variable t to represent the
current modified cost of rev(di). The costs of other darts remain unmodified.
Let ct denote the vector of costs. That is,

ct[d] =

{
t if d = rev(di)
c[d] otherwise

Under these costs, the cost of the path in T to a vertex v is denoted ρT,t[v].
The vector ρT,t is not represented explictly by the algorithm; we use it in the
analysis and proof of correctness.

After initialization, the procedure ChangeRoot repeats the following two
steps until t equals the original cost of rev(di):

• Increase t until any further increase would result in some dart d becoming
tense with respect to ct and ρT,t.

• Pivot d into T .

Lemma 7.5.1. Throughout the execution, T is a shortest-path tree with respect
to the costs ct.

Proof. We prove the lemma by induction. For the basis of the induction, we
must prove that T is a shortest-path tree immediately after the special pivot,
when rev(di) is pivoted in.

Define ρ to be the from-tail(di) distance vector with respect to c. At the
very beginning of ChangeRoot, before rev(di) is pivoted in, T is a shortest-
path tree, so by Lemma 7.1.3 its darts are tight with respect to ρ and c. Since
ct is identical to c on these darts, they are also tight with respect to ct.

By Lemma 7.1.4, it remains only to show that rev(di) itself is tight when it
is first pivoted in. At this time, its cost ct[rev(di)] is

−c0 = −(ρ[tail(rev(di))]− ρ[head(rev(di))])
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so its slack cost is zero. This completes the basis of the induction.
Now for the induction step. We assume T is a shortest-path tree. The

variable t is increased until further increase would result in some dart d becoming
tense with respect to ct and ρT,t. At this point, d is tight. Therefore, by
Lemma 7.1.4, pivoting d into T yields a shortest-path tree.

7.6 Which darts are candidates for pivoting in?

In this section, we consider the loop of ChangeRoot in which t is increased.
The algorithm pivots in a dart d only if necessary, i.e. if continuing the

shrinking or growing phase without pivoting in d would result in T not being a
shortest-path tree, in particular if d would become tense with respect to c and
ρT,t. A dart d is in danger of becoming tense only if its slack cost with respect
to ρT,t is decreasing.

We define a labeling of the vertices with colors. For each vertex v, if the
root-to-v path contains rev(di) then we say v is blue, and otherwise we say v is
red.

Lemma 7.6.1. Suppose that t increases by ∆. For a dart d not in T , the slack
cost of d

• decreases if tailG(d) is red and headG(d) is blue,

• increases if tailG(d) is blue and headG(d) is red, and

• otherwise does not change.

rev(di) Observation ??.
Suppose rev(di) is in T . Then the fundamental cut of rev(di) with respect to

T has the form ~δG(S) where S is the set of red vertices. When the cost of rev(di)
increases by ∆, by Lemma 7.6.1, the darts of this cut (not including rev(di)) un-
dergo a decrease of ∆ in their slack costs. By Fundamental-Cut/Fundamental-
Cycle Duality (4.6.1), these are the darts belonging to the the fundamental cycle
of rev(di) in the dual G∗ with respect to T ∗.

Since tailG∗(rev(di)) is f∞, this cycle, minus the dart rev(di) itself, is the
path in T ∗ from headG∗(rev(di)) to f∞. We summarize this result as follows:

Lemma 7.6.2. Suppose rev(di) is in T and its cost increases by ∆. This results
in a decrease by ∆ in the slack costs of the darts of the headG∗(rev(di))-to-f∞
path in T ∗, and a decrease by ∆ in the slack costs of the reverse darts.

7.7 Efficient implementation

The concrete version of MSSP does not explicitly represent the distances ρT,t[·].
Instead, it represents the slack costs of the darts whose edges are not in T . This
permits an efficient implementation of ChangeRoot.
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Figure 7.3: This figure shows the coloring of vertices. Those vertices reached
through rev(di) are blue and the others are red. The red-to-blue nontree arcs are
labeled with - to indicate that their slack costs decrease as the algorithm pro-
gresses. The blue-to-red nontree arcs are labeled with + to indicate that their
slack costs increase. The red-to-red and blue-to-blue arcs remain unchanged.
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f1

f∞

Figure 7.4: This figure illustrates that the edges whose slack costs are changing
form a cycle, the fundamental cycle of rev(di). The duals of darts on the f1-to-
f∞ path decrease in slack cost, and their reverses increase in slack cost.

7.7.1 ChangeRoot

Now we give the procedure ChangeRoot. (We later describe how it is imple-
mented using data structures.)

def ChangeRoot(T, di):
pre: The root of T is tailG(di)

1 initialize Ai, Bi := ∅.
2 t := −c[di] + slack cost of di
3 remove from T the dart whose head is headG(di) and add rev(di)
4 comment: now the root of T is head(di)
5 repeat
6 let P be the headG∗(rev(di))-to-f∞ path in T ∗

7 find a dart d̂ in P whose slack cost s is minimum
8 ∆ = min{s, c[rev(di)]− t}
9 subtract ∆ from the slack costs of darts in P
10 add ∆ to t and to the slack costs of reverses of darts in P
12 if ∆ < c[rev(di)]− t
11 remove from T the dart whose head is headG(d̂), and add it to Ai
12 add d̂ to T and to Bi
13 until t = c[rev(di)]
14 return (Ai, Bi)
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Figure 7.5: The left figure shows a tree. The right figure indicates that the tree
must be represented by a data structure in such a way that each edge has two
weights, the slack cost of the rootward dart and the slack cost of the leafward
dart. The operation AddToAncestor(v,∆) operates on the edges of the v-
to-root path. For each edge, the operation subtracts ∆ from the rootward dart
and adds ∆ to the leafward dart.

7.7.2 Data structure

To support efficient implementation, MSSP represents T in two ways. It rep-
resents T directly via a table, and represents T indirectly by representing the
interdigitating tree T ∗ (rooted at f∞) by a link-cut tree.

The table parentD[·] stores, for each vertex v that is not the root of T , the
dart of T whose head is v (the parent dart of v).

The link-cut tree representing T ∗ has a node for each vertex of G∗ and a
node for each edge of T ∗. The edge-nodes are assigned pairs of weights; the
weights associated with edge e are (wR(e), wL(e)), where wR is the slack cost of
the dart of e oriented towards the root f∞ and wL is the slack cost of the dart
of e oriented away from the root.

In each iteration, in Line 7 the algorithm uses a AncestorFindMin op-
eration on the link-cut tree representing T ∗ to select the dart d̂ to insert into
T and obtain the dart’s slack cost ∆. In Line 11 the algorithm uses the table
parentD[·] to find which dart must therefore be removed from T . In Lines 9
and 10, the algorithm updates the slack costs along P using the operation
AddToAncestors(headG∗(rev(di)),∆).

The topological changes to T in Lines 11 and 12 are carried out by making
topological changes to T ∗ using operations Cut, Evert, and Link. First, the
dart d̂ being pivoted into T must be removed from T ∗ by a Cut operation.
This breaks T ∗ into two trees, one rooted at f∞ and one rooted at tailG∗(d̂).
Next, as shown in Figure 7.6, an Evert operation must be performed on the
latter tree to reroot it at headG∗(d

′) where d′ = parentD[headG(d̂)] is the dart
to be removed from T in Line 11. This reorients the path from headG∗(d

′) to

headG∗(d̂). Finally, now that headG∗(d
′) is the root, this tree is linked to the

one rooted at f∞ by performing Link(headG∗(d
′), tailG∗(d

′)).
The link-cut tree must support GetWeight, Evert, AddToAncestor,

and AncestorFindMin. Moreover, since eversion changes which dart of an
edge e is oriented towards the root, the weights must be handled carefully.

Each iteration of the repeat-loop of Line 5 thus requires a constant number of
link-cut-tree operations It follows that the time for iteration i of MSSP requires
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d̂

d�

Figure 7.6: This figure shows the need for reversing the direction of a path in
the dual tree T ∗. The dual tree is shown using rootward darts. The diagram
on the left shows the situation just before a pivot. The red dashed edge d̂ is
about to be pivoted into T , which causes the corresponding dual edge to be
removed from T ∗. The thick black edge must be removed from T , which causes
the corresponding dual edge to be added to T ∗. The figure on the right shows
the resulting situation. Note that the thick edges in the dual tree have reversed
direction.
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amortized time O((1 + |Ai|) log n). By Corollary 7.4.2,
∑
i(1 + |Ai|) is at most

the number of darts plus the size of the boundary of f∞. Since the initialization
of the data structures takes linear time, it follows that MSSP requires time
O(n log n).

7.8 Number of pivots - the degenerate case

In this section we show that it is not necessary to assume unique shortest paths.
Note that we had used this assumption only to bound the number of pivots in
Section 7.3. For the correctness we only used the fact that the dart d̂ chosen
in line 7 of ChangeRoot is a dart with minimum slack cost on the path P ,
so that T remains a shortest path tree at all times. When shortest paths are
not unique, there may be more than one dart with minimum slack cost in P .
We show that if d̂ is chosen to be the leafmost such dart (i.e., the one farthest
from f∞ on P ), then each dart is ejected from T at most once during the entire
execution of the algorithm, and hence the number of pivots is bounded by the
number of darts in the graph.

Lemma 7.8.1. Let v be any vertex. For j = 0, 1, 2, . . . ..., let P vj be the root-
to-v path in the shortest-path tree T after j pivots. The paths P v0 , P

v
1 , . . . are

mutually noncrossing.

Proof. Assume the theorem is not true. Let j be the minimum integer such
that, for some vertex v and some integer i < j, P vj crosses P vi . The path P vj
is obtained from P vj−1 by a pivot. The pivot must be ordinary since otherwise,

because the dart rev(d̂) that pivots into the shortest path tree lies on f∞, any
path that crosses P vj also crosses P vj−1, contradicting the definition of j. Let T
be the shortest-path tree just before the j’th pivot, and let xy be the dart that
enters T in the j’th pivot. Then P vj−1 is the path to v in T . Write P vj−1 = Q1◦Q2

where the end of Q1 (and start of Q2) is y. Let R be the path in T to x. Then
P vj = R ◦ xy ◦ Q2. Since Q2 belongs to P vj−1, the choice of j implies that P vi
does not cross Q2.

Consider the cycle C = R ◦ xy ◦ rev(Q1). Observe that for any dart d of
C other than xy, either d or rev(d) belongs to T . Thus, for any dart d that is
enclosed by C such that d ∈ T ∗, d is a descendant of xy in T ∗. j’th pivot. Let o
be a dummy vertex embedded inside f∞ connected by edges to all the vertices
of f∞. Let s be the first vertex of P vi . Let S = os ◦ P vi .

Suppose S and C cross. Consider the shortest prefix S′ of S that crosses C.
Since o is not enclosed by C, the last dart of S′ is strictly enclosed by C. Let
z be the tail of the last dart of S′. Let u be the first vertex of S after z that
belongs to C, or v if S does not intersect C after z. The subpath S[z, u] of S
is a shortest path, so all of its darts have slack zero. By choice of S[z, u], it is
enclosed by C. Hence, if at least one the darts of S[z, u] is not in T , then it is
a proper descendant in T ∗ of xy. In this case the leafmost rule does not select
xy to pivot in, which is a contradiction. It follows that S[z, u] must be a path
in T .
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Figure 7.7: Illustrations for the proof of Lemma 7.8.1.

We now consider three different options for u. If u ∈ Q1 then Q1[u] and
S[z, u] are distinct subpaths of T ending at u, which contradicts T being a tree.
Similarly, if u ∈ R then R[u] and S[z, u] are distinct subpaths of T ending at u,
which contradicts T being a tree. See Figure 7.7 (left).

The only remaining option is u = v, and since S[z, u] is a path in T whose
only vertex on C is z, then it must also be that z = y and S[z, u] = Q2. But
then S does not cross R ◦ xy ◦Q2 = P vj . See Figure 7.7 (middle).

To conclude, either S crosses C, but not P vj , or S does not cross C. In the
former case P vi does not cross P vj because P vi is a subpath of S. In the latter
case, any crossing of S and P vj is also a crossing of S and P vj−1, contradicting
the choice of j. See Figure 7.7 (middle).

Lemma 7.8.2. Once a dart pivots out of T it does not pivot back in within the
same call to ChangeRoot.

Proof. Consider an iteration of the repeat-loop. Let d̂ be the dart selected in
Line 7 to be inserted into T , and let d̃ be the dart that in Line 11 is removed
from T . d̂ and d̃ have the same head v. Since the dart d̂ selected in Line 7 is in
P , its head v is blue and its tail is red. Consider the moment just after Lines 11
and 12 are executed. Since d̂ has been added to T , v becomes red. Since along
the execution of ChangeRoot vertices only change color from blue to red, no
dart whose head is v will be inserted into T in the remainder of the execution
of ChangeRoot.

Lemma 7.8.3. Each dart is ejected from T at most once during the entire
execution of the algorithm

Proof. Let d be a dart. Assume d is ejected from T twice during the execution
of the algorithm. By Lemma 7.8.2, it must do so in two distinct calls to Chang-
eRoot. Let i < j be such that d is ejected during the calls to ChangeRoot
on Ti and Tj . Then d ∈ Ti, d /∈ Ti+1, d ∈ Tj , d /∈ Tj+1. Therefore, two of the
root-to-head(d) paths in the trees Ti, Ti+1, Tj , Tj+1 must cross, contradicting
Lemma 7.8.1.
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7.9 Using the output of the MSSP algorithm

There are several ways to use the output of the MSSP algorithm.

7.9.1 Paths

We can use the output to build a data structure that supports queries of the
form ShortestPath(head(di), v) where di is a dart of the boundary of f∞ and
v is an arbitrary vertex.

Fix a vertex v, and let b1, . . . , bdegree(v) be the darts entering v. For each
dart di on the boundary of f∞, define

g(i) = min{j : bj is head(di)-tight}

Note that bg(i) is the last dart in a shortest head(di)-to-v path.
Corollary 7.3.2 implies that, for each entering dart bj , the set {i : g(v, i) = j}

forms a consecutive subsequence of (1 2 · · · ). For different entering darts, the
subsequences are disjoint. Using, e.g., the data structure of [Mehlhorn and Naher, 1990],
one can represent g(·) in O(degree(v)) space so that computing g(i) takes
O(log log k) time where k is the number of darts on the boundary of f∞. Over all
vertices v, the space required is linear in the size of the graph. Given these data
structures, a query ShortestPath(head(di), v) can be answered iteratively by
constructing the path backwards from v to head(di), one dart per iteration. The
time for each iteration is O(log log k), so constructing a shortest-path consisting
of ` edges takes time O(` log log n).

7.9.2 Distances

We describe a Distances algorithm that processes the output of the MSSP
algorithm to answer a given set of q queries of the form distance(tail(di), v)
in time O((n + q) log n). The Distances algorithm maintains a link-cut tree
representation of T as T goes from T0 to T1 to ... to Tk. The link-cut tree assigns
weights to the vertices. The Distances algorithm ensures that the weight of v
is the length of the root-to-v path in T . For i = 0, 1, . . . , k − 1, when T is the
tail(di)-rooted shortest-path tree, the Distances algorithm queries the link-cut
tree to find the weights of those vertices v for which the tail(di)-to-v distance is
desired. The time per pivot and per query is O(log n).

Now we give the algorithm more formally. We represent the evolving shortest-
path tree T using a link-cut-tree data structure that supports AddToDescen-
dants and GetWeight. We maintain the invariant that the weight assigned
in T to each vertex v is the length of the root-to-v path in T .
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def Distances(d1 · · · dk, T0,P,Q):
pre: d1 · · · dk are the darts of f∞,

T0 is the tail(d1)-rooted shortest-path tree,

P is the sequence of pivots (d′, d̂) produced by the MSSP algorithm
Q is an array such that Q[i] is a set of vertices

post: returns the set D = {(i, v, dist(tail(di), v)) : v ∈ Q[i]} of distances
1 initialize T :=link-cut tree representing T0 with weight(v) := c(T0[v]))
2 initialize D = ∅, i := 0

3 for each pivot (d′, d̂) in P,

4 if (d′, d̂) is a special pivot, // about to transform to next tree...
5 i := i+ 1

// ... but first find distances in current tree
6 for each v ∈ Q[i],
7 append (i, v, T.GetWeight(v)) to D

// perform pivot
8 T.Cut(tail(d′)) // remove d′ from T
9 T.AddToDescendants(head(d′),−T.GetWeight(head(d)))

10 T.Link(tail(d̂),head(d̂)) // add d̂ to T

11 T.AddToDescendants(head(d′), c[d̂] + T.GetWeight(tail(d))
12 return Q

In Line 4, if the next pivot in the sequence is a special pivot, it means that
the current tree is a shortest-path tree, so now is the time to find distances from
the current root. The algorithm maintains the invariant that the weight of each
vertex v in T is the length of the root-to-v path in T , so in Line 7 the distance
to v is the weight of v.

Lines 8-11 carry out a pivot. Line 8 ejects d′, breaking the tree into two trees,
one with the same root as before and one rooted at head(d′). Line 9 updates the
weights of vertices in the latter tree to preserve the invariant. Line 10 inserts
d̂, forming a single tree once again. Line 11 again updates the weights of the
vertices that were in the latter tree to preserve the invariant.
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Problem 7.4. (minimum st-cut in undirected planar graphs using MSSP.)

1. Let G be an n-vertex planar graph with dart lengths. Let f and g be two
faces, and P be a simple path from a vertex on f to a vertex on g. Give
an O(n log n)-time algorithm that returns a minimum-length simple cycle
that encloses exactly one of f and g, and crosses P at most once.
Hint: the concept of trimming along a path (Section 4.9) is useful here.

2. Let G be an undirected connected planar graph with non-negative edge
lengths. Let f and g be two faces of G. Give an O(n log n)-time algorithm
that finds the shortest cycle in G that separates f and g.

3. For vertices s, t in an undirected graph with edge capacities, a minimum
st-cut is a set of edges that separates s and t and whose sum of capacities
is minimum. Let s, t be two distinct vertices in an undirected connected
planar graph G with non-negative edge capacities. Give an O(n log n)-time
algorithm that returns a minimum st-cut in G.

Problem 7.5. (substring longest common subsequence using MSSP.) A string
is a sequence of characters. The longest common subsequence (LCS) of two
strings S and T is the longest string W that can be obtained from both S and T
by deleting characters. For example, The longest common subsequence of ”abc-
cababca” and ”badbadbad” is ”bababa”. There is an easy, well known dynamic
programming algorithm that computes the LCS in O(|S||T |) time. Consider the
following grid graph G = (V,E). The vertex set V is {vij : 0 ≤ i ≤ |S|, 0 ≤ j ≤.
Vertex vij is adjacent to vertices v(i−1)j , v(i+1)j , vi(j−1), vi(j+1). So far this is
just a regular grid graph. In addition, if S[i] = T [j] then v(i−1)(j−1)vij is an
edge in E.

7.9.3 Distance data structure

Let D be a dynamic data structure. That is, a data structure that undergoes
updates over time. At any point during the execution of an algorithm, the data
structure D can answer queries according to the current version of the data
structure, or be modified by changing a a pointer or some other value stored by
the data structure.

We say thatD is an ephemeral dynamic data structure if an update overwtires
the old version of D, leaving only the new version of D available for queries and
further updates. We say that D is persistent if one can query any version of the
data structure. Driscoll et. al [Driscoll et al., 1989] showed a general technique
to make any ephemeral data structure persistent. If the in-degree of the data
structure (i.e., the number of pointers pointing to each node) is bounded by a
constant, then the space and time cost to represent each update operation is
amortized constant, and the cost of each query operation becomes slower by a
constant factor in the worst case.
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We apply this technique to the ephemeral link-cut tree data structure rep-
resenting the evolving shortest-path tree T . Since there are O(n) pivots during
the entire algorithm, and since each pivot can be implemented in O(log n) time,
the size of the resulting persistent representation of T is O(n log n), and the
time to construct it remains O(n log n). Now, for any dart di of f∞, and any
vertex v, the distance dist(tail(di), v)) can be returned, by quering the weight
of v in the version of T just before the special pivot in which di+1 enters T .

7.10 Chapter Notes

The MSSP algorithm was developed by Klein [Klein, 2005]. Cabello, Cham-
bers and Erickson [Cabello and Chambers, 2007, Cabello et al., 2012] presented
a similar algorithm, and generalized it to graphs embedded on surfaces of higher
genus. The algorithm presented in this Chapter is based on the variant of Ca-
bello et al. [Cabello et al., 2012].

Eisenstat and Klein [Eisenstat and Klein, 2013] showed that in unweighted
planar graphs the algorithm can be implemented in O(n) time witnhout link-cut
tree, using only parent pointers to represent the primal and dual trees. They
also showed a matching sorting-based lower bound of Ω(n log n) time for any
algorithm for the MSSP problem that only uses comparison and addition of
edge-weights. That is, no such algorithm can compute the sequence of pivots
computed by the MSSP algorithm in o(n log n) time.

The MSSP algorithm in this chapter is closely related to the maximum st-
flow algorithm in Chapter 10.


