
Chapter 1

Rooted forests and trees

The notion of a rooted forest should be familiar to the reader. For completeness,
we will give formal definitions.

Let N be a finite set. A rooted forest on N is defined by a pair (N, p) where
p is a function p : N �! N [{?} such that there is no positive integer k such
that pk(x) = x for some element x 2 N .

The elements of N are nodes of the forest (also called vertices but we some-
times prefer node over vertex to emphasize these are elements of a rooted forest).
A node x such that p(x) = ? is a root. Each forest has at least one root; it is a
tree if it contains only one root.

For each nonroot node x, p(x) is called the parent of x in the tree and x is
called a child of p(x), and the ordered pair xp(x) is called the parent edge of
x and a child edge of p(x). The edges of the forest are the parent edges of its
nodes. A node with no children is a leaf.

A rooted tree has arity k if every node has at most k children. A binary tree
is a rooted tree that has arity two.

We say two nodes are adjacent if one is the parent of the other. We say the
edge xp(x) is incident to the nodes x and p(x). The degree of a node x, written
degree(x), is the number of edges incident to x.

The ancestors of x are defined inductively: x is its own ancestor, and (if x
is not the root) the ancestors of x’s parent are also ancestors of x. If x is the
ancestor of y then y is a descendant of x. We say y is a proper ancestor of x
(and x is a proper descendant of y) if y is an ancestor of x and y 6= x. The depth
of a node is the number of proper ancestors it has.

We say an edge xp(x) is an ancestor edge of y if x is an ancestor of y. We
say xp(x) is a descendant edge of y if p(x) is a descendant of y.

A subforest/subtree of (N, p) is a forest/tree (N 0, p0) such that N 0 is a subset
of N , and p0 is the restriction of p to N 0.

Deletion of an edge x̂p(x̂) from a rooted forest (N, p) is an operation that

11

12 CHAPTER 1. ROOTED FORESTS AND TREES

yields the forest (N, p0) where

p0(x) =

⇢
? if x = x̂
p(x) otherwise

If F is a rooted forest and e is an edge of F then we use F � {e} to denote the
result of deleting e.

Deletion of a node x̂ from a rooted forest (N, p) is an operation that yields
the forest (N � {x̂}, p0) where

p0(x) =

⇢
? if p(x) = x̂
p(x) otherwise

If F is a rooted forest and x̂ is a node of F then we use F � {x̂} to denote the
result of deleting x̂.

More generally, if S is a set of nodes or a set of edges, F � S denotes the
forest obtained from F by deleting every element of S.

For a tree T and a node x of T , the subtree rooted at x is the tree obtained
from T by deleting every node that is not a descendant of x.

For a forest T and a node x of T , the root-to-x path is the sequence x0x1 . . . xk

where x0 is the root of T , xk is x, and xi is the parent of xi+1 for i = 0, . . . , k�1.
We denote this path by T [x].

Ancestorhood defines a partial order among nodes of a forest. Given a set
S of nodes of a forest, a rootmost node of S in the forest is a node v such that
no proper ancestor of v is in S. A leafmost node of S is a node v such that no
proper descendant of v is in S.

Given two nodes u and v of a forest, we say u is leafward of v and v is
rootward of u if u is a descendant of v. A sequence v1, . . . , vk of nodes of the
forest is a leafward path if vi’s parent is vi+1 for i = 1, . . . , k � 1.

1.1 Rootward computations

Suppose T is a rooted tree and w(·) is an assignment of weights to the nodes.
There is a simple, linear-time algorithm to compute, for each node u, the total
weight of all descendants of u:

def totalWeight(u):
return w(u) +

P
{totalWeight(v) : v a child of u}

We call this a rootward computation since the order of nodes for which it com-
putes results is consistent with the rootward partial order: children before par-
ents. This algorithmic schema, though simple, comes up again and again: in
finding separators for trees (in the next section), in algorithms that exploit
interdigitating trees in planar graphs (Section 4.5), in processing a breadth-
first-search tree (Section 5.4), in dynamic-programming algorithms on trees
(Section 14.1) and on graphs of bounded carvingwidth (Section 14.3.1) and
bounded branchwidth (Section 14.5.1).

1.2. SEPARATORS FOR ROOTED TREES 13

Note that TotalWeight(u) must iterate through the children of u, whereas
the formal definition of a forest provides only a way to go from a node to its
parent. For this algorithm to be e�cient, therefore, it should be proceeded
by another rootward computation in which a table is constructed that maps
each node to its children. The latter computation takes only linear time, and
enables other rootward computations, such as TotalWeight, to be carried
out in linear time.

1.2 Separators for rooted trees

A separator for a tree is a node or edge whose deletion results in trees that are
“small” in comparison to the original graph.

Definition 1.2.1. For a number 0 < ↵ < 1, a rooted tree, and an assignment
ŵ(·) of weights to nodes, we say a node v is ↵-heavy with respect to ŵ(·) if ŵ(v)
is greater than ↵ times the sum of all weights.

We say v is a leafmost ↵-heavy node if it is ↵-heavy but its children are not.

Lemma 1.2.2 (Leafmost Heavy Node). There is a linear-time algorithm that,
given a positive number ↵ less than 1, a rooted tree, and an assignment ŵ(·)
of weights to nodes such that the weight of each node is at least the sum of the
weights of its children, outputs a leafmost ↵-heavy node of the tree.

Proof. Call the procedure below on the root of T .

define LeafmostHeavyNode(v):
1 if some child u of v has ŵ(u) > ↵W ,
2 return LeafmostHeavyNode(u)
3 else return v

By induction on the number of invocations, for every call LeafmostHeavyNode(v),
we have ŵ(v) > ↵W . If v is a leaf then the condition in Line 1 is not satisfied,
so the procedure terminates. Let v0 be the node returned by the procedure.
Since the condition in Line 1 did not hold for v0, every child v of v0 satisfies
ŵ(v) ↵W .

1.2.1 Node separator

Lemma 1.2.3 (Tree Node Separator). Let T be a rooted tree, and let w(·) be
an assignment of weights to nodes. Let W be the sum of weights. There is a
linear-time algorithm to find a node v0 such that every tree in the forest T �{v0}
has total weight at most W/2.

Proof. For each node u, define ŵ(u) =
P

{w(v) : v a descendant of u}. Then
ŵ(root) = W . The values ŵ(·) can be computed using a rootward computation
as in Section 1.1. Let v0 be a leafmost 1/2-heavy node. Let v1, . . . , vp be the

14 CHAPTER 1. ROOTED FORESTS AND TREES

Figure 1.1: A rooted tree. Suppose the nodes are each assigned weight 1. The
gray node is a separator whose deletion results in a forest, each of whose trees
has weight at most half the total weight. The dashed edge is a separator whose
deletion results in a forest, each of whose trees has weight at most three-fourths
of the total weight.

children of v0. For each child vi, the subtree rooted at vi has weight at most
W/2. Each such subtree is a tree of T � {v0}. The remaining tree is T � {v :
v is a descendant of v0}. Since the sum

P
{w(v) : v is a descendant of v0} =

ŵ(v0) exceeds W/2, the weight of the remaining tree is less than W/2.

1.3 Edge separators

Lemma 1.3.1 (Tree Edge Separator of Edge-Weight). Let T be a binary tree,
and let w(·) be an assignment of weights to edges. There is a linear-time algo-
rithm to find an edge ê such that every tree in T � {ê} has at most two-thirds
of the weight.

Proof. Assume for notational simplicity that the total weight is 1. For a nonroot
node v, define

ŵ(v) = w(parent edge of v) +
X

{w(e) : e a descendant edge of v}

and define ŵ(root) = 1. Let v0 be a leafmost 1/3-heavy node with respect to
ŵ(·). The sum

P
{ŵ(v) : v a child of the root} equals 1. Because the root has

at most two children, ŵ(v) � 1/2 for some child of the root. Thus v9 is not
the root of T . Let e0 be the parent edge of v0. Then T � {e0} consists of two
trees. One tree consists of all descendants of v0, and the other consists of all
nondescendants.

The weight of all edges among the nondescendants is 1 � ŵ(v0), which is
less than 1 � 1/3 since ŵ(v0) > 1/3. Let v1, . . . , vp be the children of v0. (Note

1.3. EDGE SEPARATORS 15

that 0 p 2.) The weight of all edges among the descendants is
Pp

i=1 ŵ(vi).
Since ŵ(vi) 1/3 for i = 1, . . . , p and p 2, we infer

P
i ŵ(vi) 2/3.

The following example shows that the restriction on the arity of the trees in
Lemma 1.3.1 cannot be discarded:

...1/k 1/k

If the number of children is k then removal of any edge results in remaining
weight (k � 1)/k.

The following example shows that, for binary trees, the factor two-thirds in
Lemma 1.3.1 cannot be improved upon.

1/3

1/3

1/3

For some separators, we need to impose a condition on the weight assign-
ment. We say a weight assignment is ↵-proper if no element is assigned more
than an ↵ fraction of the total weight.

Lemma 1.3.2 (Tree Edge Separator of Node Weight). Let T be a binary tree,
and let w(·) be a 3

4 -proper assignment of weights to nodes such that each nonleaf
node is assigned at most one-fourth of the weight. There is an edge ê such that
every tree in T � {ê} has at most three-fourths of the weight.

Proof. Assume the total weight is 1. For each node v, define

ŵ(v) =
X

{w(v0) : v0 a descendant of v}

Let v be a leamost 3/4-heavy node with respect to ŵ(·). Let v1, . . . , vp be the
children of v. Note that p 2. Since w(v) 3

4 but ŵ(v) > 3
4 , we must have

p > 0, so w(v) 1
4 .

For 1 i p, let Wi be the weight of descendants of vi. Let î =
maxarg1ipWi. By choice of v, Wî 3

4 . By choice of î,

Wî � 1

2

pX

i=1

Wi >
1

2

✓
3

4
� w(v)

◆
� 1

2

✓
3

4
� 1

4

◆
= W/4

This shows that choosing ê to be the edge vîv satisfies the balance condition.

The following example shows that the factor three-fourths in Lemma 1.3.2
cannot be improved upon.

16 CHAPTER 1. ROOTED FORESTS AND TREES

1/4

1/4

1/4

1/4

By changing our goal slightly, we can get a better-balanced separator.

Lemma 1.3.3 (Tree Edge Separator of Node/Edge Weight). Let T be a binary
tree, and let w(·) be an assignment of weight to the nodes and edges such that,
for each node v, the weight assigned to v is at most 1

3 (3 � degree(v)) times the
total weight. There is an edge e such that every rooted tree in T � {e} has at
most two-thirds of the weight.

Problem 1.1. Prove Lemma 1.3.3.

1.4 Computation time for finding separators

For Lemmas 1.3.1 through 1.3.2, the weight assignment ŵ(·) can be obtained
from w(·) via a rootward computation, and the linear-time implementation of
LeafmostHeavyNode can be employed.

1.4.1 Recursive tree decomposition

In the Appendix, we describe data structures for representing sequences and
rooted trees. These can be used to preprocess a rooted tree so as to find recursive
separators.

Problem 1.2. A recursive edge-separator decomposition for a rooted tree T is
a rooted tree D such that

• the root r of D is labeled with an edge e of T ;

• for each connected component K of T � e (there are at most two), r has a
child in D that is the root of a recursive edge-separator decomposition of
K.

Show that there is an O(n log n) algorithm that, given a binary tree T with
n nodes, returns a recursive edge-separator decomposition of depth O(log n).

Problem 1.3. Show that the data structure for representing trees can be used to
quickly find edge-separators in binary trees. Use this idea to give a fast algorithm
that, given a tree of maximum degree three, returns a recursive edge-separator
decomposition of depth O(log n). Note: A running time of O(n) can be achieved.

	Rooted forests and trees
	Rootward computations
	Separators for rooted trees
	Node separator

	Edge separators
	Computation time for finding separators
	Recursive tree decomposition

	Basic graph definitions
	Edge-centric definition of graphs
	Walks, paths, and cycles
	Connectedness
	Two-edge-connectivity and cut-edges
	Subgraphs and edge subgraphs
	Deletion of edges and vertices
	Contraction of edges
	Minors

	Elementary graph theory
	Spanning forests and trees
	Nontree edges and fundamental cycles

	Cuts
	(Undirected) cuts
	(Directed) dicuts
	Dart cuts
	Simple cuts
	Tree edges and fundamental cuts
	Paths and Cuts

	Vector Spaces
	The cut space
	The cycle space
	Bases for the cut space and the cycle space
	Another basis for the cut space
	Conservation and circulations

	Embedded graphs
	Embeddings
	Euler characteristic and genus
	Remark on the connection to geometric embeddings
	The dual graph
	Connectedness properties of embedded graphs
	Cut-edges and self-loops
	Deletion
	Compression (deletion in the dual) and contraction

	Chapter Notes

	Planar embedded graphs
	Planar embeddings
	Contraction preserves planarity
	Sparsity of planar embedded graphs
	Strict graphs and strict problems
	Semi-strictness
	Orientations with bounded outdegree
	Maintaining a bounded-outdegree orientation for a dynamically changing graph
	Analysis of the algorithm for maintaining a bounded-outdegree orientation

	Cycle-space basis for planar graphs
	Representing a circulation in terms of face potentials

	Interdigitating trees
	Simple-cut/simple-cycle duality
	Compressing self-loops
	Compression and deletion preserve planarity

	Left, right, and Crossings
	Emanating and entering from left and right
	Crossing walks

	Faces, edges, and vertices enclosed by a non-self-crossing cycle
	Trimming
	Biconnectivity
	Representing embedded graphs in implementations

	Separators in planar graphs
	Triangulation
	Weights and balance
	Fundamental-cycle separators
	Breadth-first search
	O(n)-vertex separator
	Size of the separator

	Noncrossing families of subsets
	The connected-components tree
	Vertex and face labels
	The connected-components tree

	Cycle separators
	Shortcutting a fundamental-cycle separator
	Balanced, short, and simple cycle

	Division into regions
	Computing a Decomposition Tree
	Number of Holes
	Number of Vertices and Boundary Vertices
	Admitting an r–division
	Running time

	Recursive divisions
	Chapter Notes

	Shortest paths with nonnegative lengths
	Shortest-path basics: path-length property and relaxed and tense darts
	Using a division in computing shortest-path distances
	The algorithm

	Correctness
	The Dijkstra-like property of the algorithm
	Accounting for costs
	The Payoff Theorem
	Analysis
	Parameters
	History

	Multiple-source shortest paths
	Slack costs, relaxed and tense darts, and consistent price vectors
	Slack costs
	Relaxed and tense darts
	Consistent price vectors

	Specification of multiple-source shortest paths
	Pivots

	Contiguity property of shortest-path trees in planar graphs
	The abstract MSSP algorithm
	Analysis of the abstract algorithm

	ChangeRoot: the inner loop of the MSSP algorithm
	Which darts are candidates for pivoting in?
	Efficient implementation
	ChangeRoot
	Data structure

	Number of pivots - the degenerate case
	Using the output of the MSSP algorithm
	Paths
	Distances
	Distance data structure

	Chapter Notes

	Shortest paths with negative lengths
	Total Monotonicity and the Monge Property
	Boundary distances and the Monge Property
	Finding all column minima of a Monge matrix
	Finding all the column minima of a triangular Monge matrix

	The Algorithm
	Computing Single-Source Inter-Part Boundary Distances
	Computing Single-Source Inter-Part Distances
	Correctness and Analysis
	Chapter Notes

	Shortest paths in dense distance graphs
	Decomposing a DDG into bipartite graphs
	The Monge heap
	Implementing Dijkstra's algorithm using Monge heaps
	Analysis

	Implementing Monge heaps
	Analysis

	Chapter Notes

	Single-source, single-sink max flow
	Flow assignments, capacity assignments, and feasibility
	Negative capacities

	Circulations
	Capacity-respecting circulations in planar graphs

	st-flows
	Max limited flow in st-planar graphs
	st-planar embedded graphs and augmented st-planar embedded graphs
	The set-up
	The algorithm

	Max flow in general planar graphs
	The algorithm
	Erickson's analysis
	Dual tree is shortest-path tree
	Crossing numbers

	Covering space
	The Universal Cover

	Finishing the proof
	Efficient Implementation
	Chapter Notes

	Multiple-source, multiple-sink max flow
	Distance Oracles
	An approximate distance oracle for undirected planar graphs
	Overall strategy
	Connections to a shortest path
	The oracle
	Efficient construction

	An Exact distance oracles with (n) space and (n) query time
	An exact oracle with (n4/3) space and O(log2 n) query time
	Additively weighted Voronoi diagrams.
	Point location in Voronoi diagrams
	The oracle

	Primal-dual method for approximation algorithm
	Goemans and Williamson's analysis of the primal-dual approximation algorithm
	Proving the bound for vertex-weighted Steiner tree
	Covering all directed cycles

	Branchwidth and local approximation schemes
	Dynamic programming on a rooted tree
	Carvings
	Carving-decomposition: carving of a vertex set
	Solving edge dominating set on a graph with a carving-decomposition of small width

	Carving-decomposition of a planar graph
	Branch decomposition: Carving of an edge-set
	Solving vertex cover on a graph with a branch decomposition of small width
	Biconnectivity and the block-cut tree
	Biconnected components and branchwidth

	A branchwidth bound for planar graphs
	The face-vertex incidence graph
	The embedded face-vertex incidence graph
	The dual of the face-incidence graph
	From a carving-decomposition of M(G) to a branch-decomposition of G
	Proof of the Radius-Branchwidth Theorem

	Approximation schemes
	The subgraph induced by k BFS levels has branchwidth at most 2k
	An approximation scheme for Vertex Cover
	An approximation scheme for maximum-weight independent set
	Maximum-weight set of edge-disjoint triangles
	Summary of approximation-scheme methodology

	Approximation scheme for the traveling salesman problem
	Cutting into small pieces
	First attempt
	Approximation through deletion decomposition

	The traveling salesman problem
	Approximating unit-weight Eulerian Bisubgraph
	Beyond unit-weight graphs: a sparsifier
	Contraction decomposition
	The framework
	Dual framework

	Properties of tours
	Lifting for TSP
	Spanner
	TSP on bounded-branchwidth planar graphs

	The brick decomposition and approximation schemes for Steiner problems
	Introducing the brick decomposition
	Portals
	Portalization
	Spanners for Steiner TSP and Steiner tree
	Beyond spanners: A more efficient PTAS for Steiner tree
	Brick decomposition: the construction
	Strip decomposition
	Columns

	Statement of subroutine lemmas for Steiner tree structure theorem
	Structure of Steiner tree within bricks
	Paths 0, …,
	The forest F' and paths Q0, …, Q
	The forest
	Type-1 and type-2 components
	Construction of
	Decomposition of Ki into KiN and KiS
	Span1
	Span2

	Approximation Schemes for some problems with optional connectivity
	Introduction
	PC Clustering
	The PC Clustering algorithm
	The weight of the output from the PC Clustering algorithm

	Appendix: Splay trees and link-cut trees
	Binary Search Trees
	Delta Representation of weights
	Supporting searches for small weight
	Delta Representation of min-weights
	Delta representation of left-right
	Rotation: An order-preserving structural change to a binary search tree
	Updating Delta representations in a rotation
	Updating minw representations in a rotation

	Splay trees
	Potential Functions for Amortized Analysis
	Analysis of splay trees

	Representation of link-cut trees
	High-level analysis of the expose operation
	Representation of trees
	Link-cut trees that do not support descendant search
	Implementing the expose operation for trees not supporting descendant search
	Analysis of Expose(u) for trees not supporting descendant search

	Link-cut trees that support descendant search
	Topological updates in link-cut trees
	Analysis of link and cut operations
	Evert

	Weight updates for link-cut trees
	Supporting AddToDescendants
	Supporting AddToAncestors
	Getting the weight of a node

	Weight searches in link-cut trees
	Supporting ancestor searches
	Supporting descendant searches
	Representing trees with dart weights

	Chapter Notes

