
Chapter 1

Rooted forests and trees

The notion of a rooted forest should be familiar to the reader. For completeness,
we will give formal definitions.

Let N be a finite set. A rooted forest on N is defined by a pair (N, p) where
p is a function p : N �! N [ {?} such that there is no positive integer k such
that pk(x) = x for some element x 2 N .

The elements of N are nodes of the forest (also called vertices but we some-
times prefer node over vertex to emphasize these are elements of a rooted forest).
A node x such that p(x) = ? is a root. Each forest has at least one root; it is a
tree if it contains only one root.

For each nonroot node x, p(x) is called the parent of x in the tree and x is
called a child of p(x), and the ordered pair xp(x) is called the parent edge of
x and a child edge of p(x). The edges of the forest are the parent edges of its
nodes. A node with no children is a leaf.

A rooted tree has arity k if every node has at most k children. A binary tree
is a rooted tree that has arity two.

We say two nodes are adjacent if one is the parent of the other. We say the
edge xp(x) is incident to the nodes x and p(x). The degree of a node x, written
degree(x), is the number of edges incident to x.

The ancestors of x are defined inductively: x is its own ancestor, and (if x
is not the root) the ancestors of x’s parent are also ancestors of x. If x is the
ancestor of y then y is a descendant of x. We say y is a proper ancestor of x
(and x is a proper descendant of y) if y is an ancestor of x and y 6= x. The depth
of a node is the number of proper ancestors it has.

We say an edge xp(x) is an ancestor edge of y if x is an ancestor of y. We
say xp(x) is a descendant edge of y if p(x) is a descendant of y.

A subforest/subtree of (N, p) is a forest/tree (N 0, p0) such that N 0 is a subset
of N , and p0 is the restriction of p to N 0.

Deletion of an edge x̂p(x̂) from a rooted forest (N, p) is an operation that
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yields the forest (N, p0) where

p0(x) =

⇢
? if x = x̂
p(x) otherwise

If F is a rooted forest and e is an edge of F then we use F � {e} to denote the
result of deleting e.

Deletion of a node x̂ from a rooted forest (N, p) is an operation that yields
the forest (N � {x̂}, p0) where

p0(x) =

⇢
? if p(x) = x̂
p(x) otherwise

If F is a rooted forest and x̂ is a node of F then we use F � {x̂} to denote the
result of deleting x̂.

More generally, if S is a set of nodes or a set of edges, F � S denotes the
forest obtained from F by deleting every element of S.

For a tree T and a node x of T , the subtree rooted at x is the tree obtained
from T by deleting every node that is not a descendant of x.

For a forest T and a node x of T , the root-to-x path is the sequence x0x1 . . . xk

where x0 is the root of T , xk is x, and xi is the parent of xi+1 for i = 0, . . . , k�1.
We denote this path by T [x].

Ancestorhood defines a partial order among nodes of a forest. Given a set
S of nodes of a forest, a rootmost node of S in the forest is a node v such that
no proper ancestor of v is in S. A leafmost node of S is a node v such that no
proper descendant of v is in S.

Given two nodes u and v of a forest, we say u is leafward of v and v is
rootward of u if u is a descendant of v. A sequence v1, . . . , vk of nodes of the
forest is a leafward path if vi’s parent is vi+1 for i = 1, . . . , k � 1.

1.1 Rootward computations

Suppose T is a rooted tree and w(·) is an assignment of weights to the nodes.
There is a simple, linear-time algorithm to compute, for each node u, the total
weight of all descendants of u:

def totalWeight(u):
return w(u) +

P
{totalWeight(v) : v a child of u}

We call this a rootward computation since the order of nodes for which it com-
putes results is consistent with the rootward partial order: children before par-
ents. This algorithmic schema, though simple, comes up again and again: in
finding separators for trees (in the next section), in algorithms that exploit
interdigitating trees in planar graphs (Section 4.5), in processing a breadth-
first-search tree (Section 5.4), in dynamic-programming algorithms on trees
(Section 14.1) and on graphs of bounded carvingwidth (Section 14.3.1) and
bounded branchwidth (Section 14.5.1).
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Note that TotalWeight(u) must iterate through the children of u, whereas
the formal definition of a forest provides only a way to go from a node to its
parent. For this algorithm to be e�cient, therefore, it should be proceeded
by another rootward computation in which a table is constructed that maps
each node to its children. The latter computation takes only linear time, and
enables other rootward computations, such as TotalWeight, to be carried
out in linear time.

1.2 Separators for rooted trees

A separator for a tree is a node or edge whose deletion results in trees that are
“small” in comparison to the original graph.

Definition 1.2.1. For a number 0 < ↵ < 1, a rooted tree, and an assignment
ŵ(·) of weights to nodes, we say a node v is ↵-heavy with respect to ŵ(·) if ŵ(v)
is greater than ↵ times the sum of all weights.

We say v is a leafmost ↵-heavy node if it is ↵-heavy but its children are not.

Lemma 1.2.2 (Leafmost Heavy Node). There is a linear-time algorithm that,
given a positive number ↵ less than 1, a rooted tree, and an assignment ŵ(·)
of weights to nodes such that the weight of each node is at least the sum of the
weights of its children, outputs a leafmost ↵-heavy node of the tree.

Proof. Call the procedure below on the root of T .

define LeafmostHeavyNode(v):
1 if some child u of v has ŵ(u) > ↵W ,
2 return LeafmostHeavyNode(u)
3 else return v

By induction on the number of invocations, for every call LeafmostHeavyNode(v),
we have ŵ(v) > ↵W . If v is a leaf then the condition in Line 1 is not satisfied,
so the procedure terminates. Let v0 be the node returned by the procedure.
Since the condition in Line 1 did not hold for v0, every child v of v0 satisfies
ŵ(v)  ↵W .

1.2.1 Node separator

Lemma 1.2.3 (Tree Node Separator). Let T be a rooted tree, and let w(·) be
an assignment of weights to nodes. Let W be the sum of weights. There is a
linear-time algorithm to find a node v0 such that every tree in the forest T �{v0}
has total weight at most W/2.

Proof. For each node u, define ŵ(u) =
P

{w(v) : v a descendant of u}. Then
ŵ(root) = W . The values ŵ(·) can be computed using a rootward computation
as in Section 1.1. Let v0 be a leafmost 1/2-heavy node. Let v1, . . . , vp be the
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Figure 1.1: A rooted tree. Suppose the nodes are each assigned weight 1. The
gray node is a separator whose deletion results in a forest, each of whose trees
has weight at most half the total weight. The dashed edge is a separator whose
deletion results in a forest, each of whose trees has weight at most three-fourths
of the total weight.

children of v0. For each child vi, the subtree rooted at vi has weight at most
W/2. Each such subtree is a tree of T � {v0}. The remaining tree is T � {v :
v is a descendant of v0}. Since the sum

P
{w(v) : v is a descendant of v0} =

ŵ(v0) exceeds W/2, the weight of the remaining tree is less than W/2.

1.3 Edge separators

Lemma 1.3.1 (Tree Edge Separator of Edge-Weight). Let T be a binary tree,
and let w(·) be an assignment of weights to edges. There is a linear-time algo-
rithm to find an edge ê such that every tree in T � {ê} has at most two-thirds
of the weight.

Proof. Assume for notational simplicity that the total weight is 1. For a nonroot
node v, define

ŵ(v) = w(parent edge of v) +
X

{w(e) : e a descendant edge of v}

and define ŵ(root) = 1. Let v0 be a leafmost 1/3-heavy node with respect to
ŵ(·). The sum

P
{ŵ(v) : v a child of the root} equals 1. Because the root has

at most two children, ŵ(v) � 1/2 for some child of the root. Thus v9 is not
the root of T . Let e0 be the parent edge of v0. Then T � {e0} consists of two
trees. One tree consists of all descendants of v0, and the other consists of all
nondescendants.

The weight of all edges among the nondescendants is 1 � ŵ(v0), which is
less than 1 � 1/3 since ŵ(v0) > 1/3. Let v1, . . . , vp be the children of v0. (Note
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that 0  p  2.) The weight of all edges among the descendants is
Pp

i=1 ŵ(vi).
Since ŵ(vi)  1/3 for i = 1, . . . , p and p  2, we infer

P
i ŵ(vi)  2/3.

The following example shows that the restriction on the arity of the trees in
Lemma 1.3.1 cannot be discarded:

...1/k 1/k

If the number of children is k then removal of any edge results in remaining
weight (k � 1)/k.

The following example shows that, for binary trees, the factor two-thirds in
Lemma 1.3.1 cannot be improved upon.

1/3

1/3

1/3

For some separators, we need to impose a condition on the weight assign-
ment. We say a weight assignment is ↵-proper if no element is assigned more
than an ↵ fraction of the total weight.

Lemma 1.3.2 (Tree Edge Separator of Node Weight). Let T be a binary tree,
and let w(·) be a 3

4 -proper assignment of weights to nodes such that each nonleaf
node is assigned at most one-fourth of the weight. There is an edge ê such that
every tree in T � {ê} has at most three-fourths of the weight.

Proof. Assume the total weight is 1. For each node v, define

ŵ(v) =
X

{w(v0) : v0 a descendant of v}

Let v be a leamost 3/4-heavy node with respect to ŵ(·). Let v1, . . . , vp be the
children of v. Note that p  2. Since w(v)  3

4 but ŵ(v) > 3
4 , we must have

p > 0, so w(v)  1
4 .

For 1  i  p, let Wi be the weight of descendants of vi. Let î =
maxarg1ipWi. By choice of v, Wî  3

4 . By choice of î,

Wî � 1

2

pX

i=1

Wi >
1

2

✓
3

4
� w(v)

◆
� 1

2

✓
3

4
� 1

4

◆
= W/4

This shows that choosing ê to be the edge vîv satisfies the balance condition.

The following example shows that the factor three-fourths in Lemma 1.3.2
cannot be improved upon.
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1/4

1/4

1/4

1/4

By changing our goal slightly, we can get a better-balanced separator.

Lemma 1.3.3 (Tree Edge Separator of Node/Edge Weight). Let T be a binary
tree, and let w(·) be an assignment of weight to the nodes and edges such that,
for each node v, the weight assigned to v is at most 1

3 (3 � degree(v)) times the
total weight. There is an edge e such that every rooted tree in T � {e} has at
most two-thirds of the weight.

Problem 1.1. Prove Lemma 1.3.3.

1.4 Computation time for finding separators

For Lemmas 1.3.1 through 1.3.2, the weight assignment ŵ(·) can be obtained
from w(·) via a rootward computation, and the linear-time implementation of
LeafmostHeavyNode can be employed.

1.4.1 Recursive tree decomposition

In the Appendix, we describe data structures for representing sequences and
rooted trees. These can be used to preprocess a rooted tree so as to find recursive
separators.

Problem 1.2. A recursive edge-separator decomposition for a rooted tree T is
a rooted tree D such that

• the root r of D is labeled with an edge e of T ;

• for each connected component K of T � e (there are at most two), r has a
child in D that is the root of a recursive edge-separator decomposition of
K.

Show that there is an O(n log n) algorithm that, given a binary tree T with
n nodes, returns a recursive edge-separator decomposition of depth O(log n).

Problem 1.3. Show that the data structure for representing trees can be used to
quickly find edge-separators in binary trees. Use this idea to give a fast algorithm
that, given a tree of maximum degree three, returns a recursive edge-separator
decomposition of depth O(log n). Note: A running time of O(n) can be achieved.
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