
Chapter 5

Separators in planar graphs

5.1 Triangulation

We say a planar embedded graph is triangulated if each face’s boundary has at
most three edges.

Problem 5.1. Provide a linear-time algorithm that, given a planar embedded
graph G, adds a set of artificial edgesx to obtain a triangulated planar embedded
graph. Show that the number of artificial edges is at most twice the number of
original edges.

5.2 Weights and balance

Let G be a planar embedded graph, and let α be a number between 0 and 1.
An assignment of nonnegative weights to the faces, vertices, and edges of G is
an α-proper assignment if no element is assigned more than α times the total
weight. A subpartition of these elements is α-balanced if, for each part, the sum
of the weights of the elements of that part is at most α times the total weight.

5.3 Fundamental-cycle separators

Let G be a plane graph. A simple cycle C of G defines a subpartition consisting
of two parts, the strict interior and the strict exterior of the cycle. If the
subpartition is α-balanced, we say that C is an α-balanced cycle separator. The
subgraph induced by the (nonstrict) interior, i.e. including C, is one piece with
respect to C, and the subgraph induced by the (nonstrict) exterior is the other
piece.

First we give a result on fundamental-cycle separators that are balanced
with respect to an assignment of weights only to faces.

Lemma 5.3.1 (Fundamental-cycle separator of faces). For any plane graph G,
1
4 -proper assignment of weights to faces, and spanning tree T of G such that the
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Figure 5.1: This figure illustrates the rule for assigning edges belonging to a
fundamental cycle.

boundary of each face of G has at most three nontree edges, there is a nontree
edge ê such that the fundamental cycle of ê with respect to T is a 3

4 -balanced
cycle separator for G.

Proof. Let T ∗ be the interdigitating tree, the spanning tree of G∗ consisting
of edges not in T . The vertices of T ∗ are faces of G, and are therefore as-
signed weights. The property of T ensures that T ∗ has degree at most three.
Using Lemma 1.3.2, let ê be an edge separator in T ∗ of vertex weight. By
the Fundamental-Cut Lemma (Lemma 3.2.2), the fundamental cut of ê in G
with respect to T ∗ is a simple cut in G∗ (each side of which has weight at
most three-fourths of the total) so it is, by the Simple-Cycle/Simple-Cut Theo-
rem (Theorem 4.6.2), a simple cycle in G that encloses between one-fourth and
three-fourths of the weight.

Assignments of weight to faces, vertices, and edges can also be handled:

Lemma 5.3.2. There is a linear-time algorithm that, given a triangulated plane
graph G, a spanning tree T of G, and a 1

4 -proper assignment of weights to faces,
edges, and vertices, returns a nontree edge ê such that the fundamental cycle of
ê with respect to T is a 3

4 -balanced cycle separator for G.

Problem 5.2. Prove Lemma 5.3.2 using Lemma 5.3.1.

We can give a better balance guarantee if we are separating just edge-weight.

Lemma 5.3.3 (Fundamental-cycle separator of edges). There is a linear-time
algorithm that, given a triangulated plane graph G with a 1

3 -proper assignment
of weights to edges, and a spanning tree T , returns a nontree edge ê such that
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the fundamental cycle of ê with respect to T is a 2
3 -balanced cycle separator for

G.

Problem 5.3. Prove Lemma 5.3.3 by following the proof of Lemma 5.3.1 but
using tree edge separators of vertex/edge weight (Lemma 1.3.3) instead of tree
edge separators of vertex weight (Lemma 1.3.2).

5.4 Breadth-first search

Let G be a connected, undirected graph, and let r be a vertex. For i = 0, 1, 2, . . .,
we say a vertex v of G has level i with respect to r and we define level(v) = i if
i is the minimum number of edges on an r-to-v path in G. (That is, the level of
a vertex v is the distance of v from r where the edges are assigned unit length.)
For i = 0, 1, 2, . . . , let Li(G, r) denote the set of vertices having level i.

An edge uv is said to have level i (and we write level(uv) = i) if u has level i
and v has level i + 1. (An edge whose endpoints have the same level is not
assigned a level.) Breadth-first search from r is a linear-time algorithm that
finds

• the levels of vertices and edges, and

• a spanning tree rooted at r such that, for each vertex v other than r, the
parent of v has level one less than that of v (a breadth-first-search tree).

For brevity, we refer to the levels as BFS levels and we refer to the edges of the
breadth-first-search tree as BFS edges.

5.5 O(
√
n)-vertex separator

We use fundamental-cycle separators to prove a fundamental separator result
for planar graphs.

Theorem 5.5.1 (Planar-Separator Theorem with Edge-Weights). There is a
linear-time algorithm that, for a plane graph G and 1

3 -proper assignment of
weights to edges, returns subgraphs G1, G2 such that

• E(G1), E(G2) is a partition of E(G),

• The partition E(G1), E(G2) is 2
3 -balanced, and

• |V (G1) ∩ V (G2)| ≤ 4
√
|V (G)|

The subgraphs G1, G2 are called the pieces. The set V (G1) ∩ V (G2) of
vertices common to the two subgraphs is called the vertex separator.

The Planar-Separator Theorem can be used with an assignment of weight
to vertices instead of edges. In this case, in evaluating the resulting balance, we
do not count the weight of the vertices in the vertex separator.
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Figure 5.2: Shows the levels of breadth-first search.
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Theorem 5.5.2 (Planar-Separator Theorem with Vertex-Weights). There is
a linear-time algorithm that, for a plane graph G and 1

3 -proper assignment of
weights to vertices, returns subgraphs G1, G2 such that

• E(G1), E(G2) is a partition of E(G),

• The subpartition V (G1)− V (G2), V (G2)− V (G1) of V (G) is 2
3 -balanced,

and

• |V (G1) ∩ V (G2)| ≤ 4
√
|V (G)|

Problem 5.4. Show that the Vertex-Weights version (Theorem 5.5.2) follows
easily from the Edge-Weights version (Theorem 5.5.1).

Now we give the proof of the Edge-Weights version. Let ω[·] denote the
edge-weight assignment. Assume for notational simplicity that the sum of edge-
weights is 1. The basic idea is to find a balanced fundamental cycle separator,
which might be too long, and shortcut it at small BFS levels.

The algorithm adds artificial zero-weight edges to G to triangulate it. Then,
it performs a breadth-first search of G from r. Let T be the breadth-first-search
tree. Let Vi denote the set of vertices at level i. Following Lemma 5.3.3, the
algorithm finds a 2

3 -balanced fundamental-cycle separator C with respect to T .
We partition the edges of G into two sets Ein and Eext, so that Ein contains
all edges strictly enclosed by C and Eout contains all edges not enclosed by C.
The edges of C are assigned to Ein and Eout in a way that makes the partition
2
3 -balanced. Such a partitioned exists because the weight assignment ω[·] is
1
3 -proper, and can be computed in linear time by assigning the edges of C to
Ein until the total weight of Ein is at least 1/3.

Let imin and imax denote the minimum and maximum level of a vertex of C,
respectively. For an integer i, letW≤i denote ω({uv : u and v both have level ≤
i}), and let W>i denote ω({uv : at least one of u or v have level > i}). Let i−
be the greatest integer satisfying

• imin < i− < imax

• |Vi− | ≤
√
n

• W≤i− ≤ 2/3

If no such a level exists we set i− := imin. Let i+ be the smallest integer
satisfying

• i− < i+ < imax

• |Vi+ | ≤
√
n

• W>i+ ≤ 2/3
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If no such a level exists we set i+ := imax.
Since for any level i, the sets of edges corresponding to W≤i and to W>i are

disjoint, at least one of W≤i ≤ 2/3, W>i ≤ 2/3 is true. It follows that each of
the levels i− + 1, i− + 2, . . . , i+ − 1 has greater than

√
n vertices. Hence, the

total number of vertices among these levels is greater than (i+ − i− − 1)
√
n, so

i+ − i− − 1 < n/
√
n =
√
n.

Let E1 be the set of edges whose endpoints have level at most i− if i− > imin,
and the empty set if i− = imin. Let E2 be the set of edges with at least one
endpoint at level greater than i+ if i+ < imax, and the empty set if i+ = imax.
Let E3 = Ein − (E1 ∪ E2), and let E4 = Eout − (E1 ∪ E2).

It is immediate to verify that {Ej}4j=1 is a partition of the edges of G. By
choice of i+ and i−, for j = 1, 2 we have ω(Ej) ≤ 2/3. Since C is a balanced
separator, for j = 3, 4 we have ω(Ej) ≤ 2/3.

For j = 1, 2, 3, or 4, if ω(Ej) ≥ 1
3 then the algorithm sets G1 := Ej and

G2 := all other edges of G. Since 1
3 ≤ ω(Ej) ≤ 2

3 , it follows that ω(E(G1)) ≤ 2
3

and ω(E(G2)) ≤ 2
3 .

Assume therefore that ω(Ej) <
1
3 for j = 1, 2, 3, 4. Let j be the minimum

integer such that ω(E1)+· · ·+ω(Ej) ≥ 1
3 . Then ω(E1)+· · ·+ω(Ej−1) < 1

3 and
ω(Ej) <

1
3 so ω(E1) + · · ·+ω(Ej) <

2
3 . The algorithm sets G1 := E1 ∪ · · · ∪Ej

and G2 := all other edges of G. Then ω(E(G1)) ≤ 2
3 and ω(G2) ≤ 2

3 .

5.5.1 Size of the separator

We have completed the description of the algorithm, and have ensured that
E(G1), E(G2) is a 2

3 -balanced partition of E(G). It remains to show that

|V (G1) ∩ V (G2)| ≤ 4
√
|V (G)|.

Any vertex in V (G1)∩V (G2) is an endpoint of edges in distinct sets Ei and
Ej . Such vertices fall into one of three categories:

1. level-i− vertices (if i− 6= imin), or the (at most 2) vertices of C at level
imin (if i− = imin).

2. level-i+ vertices (if i+ 6= imax), or the (at most 2) vertices of C at level
imax (if i+ = imax).

3. vertices of the cycle C in the level range (i−, i+).

There are at most
√
n in each of the first two categories (assuming

√
n ≥ 2).

We claim that the number in the third category is at most 2(i+ − i− − 1),
which in turn is at most 2

√
n. This is because the monotonicity property of

levels of vertices on leafward paths in the BFS tree implies that each of the two
leafward tree paths comprising C has at most one vertex at each BFS level.
This completes the proof of Theorem 5.5.1.

Problem 5.5. Show how to modify the algorithm so that the size of the separator
is at most c

√
n for some constant c < 4. Hint: The size criterion used to decide

whether a level i qualifies to be designated level i− can depend on |imin − i−|.
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Problem 5.6. Let G be a directed planar graph with real arc weights. A negative
cycle in G is a cycle whose arc weights sum to a negative number. Let k be the
minimum number of arcs on a negative cycle in G. Give an O(n3/2k)-time
algorithm for finding k.

Problem 5.7. Let G be a biconnected planar graph with m edges and face
weights summing to 1 such that no face weighs more than 3

4 . Give an O(m)
algorithm that finds a balanced simple-cycle separator C in G. (Note there is
no size requirement on C.)

5.6 Noncrossing families of subsets

Two nonempty sets A and B cross if they are neither disjoint nor nested, i.e. if
A ∩B 6= ∅ and A 6⊆ B and B 6⊆ A.

A family C of nonempty sets is noncrossing (also called laminar) if no two
sets in C cross.

Figure 5.3: The diagram on the left shows a Venn diagram of some noncrossing
sets, and the diagram on the right shows the corresponding rooted forest (a tree
in this case).

As illustarted in Figure 5.3, under the subset relation, a noncrossing family
C of sets forms a rooted forest FC . That is, each set X ∈ C is a node, and its
ancestors are the sets in C that include X as a subset. To see that this is a
forest, let X1 and X2 be two supersets of X in C. Since X is nonempty, X1 and
X2 intersect, so one must include the other. This shows that the supersets of
X are totally ordered by inclusion. Hence if X has any proper supersets, it has
a unique minimal proper superset, which we take to be the parent of X.

5.7 The connected-components tree

5.7.1 Vertex and face labels

Let G be a connected triangulated undirected graph. Let r be a vertex of G,
and let f∞ be a face incident to r. Recall the definition of the level of a vertex
v with respect to r given in Section 5.4. For a face f of G, define its level to be
the minimum level of a vertex incident to f . Thus, level(r) = 0, and all faces
to which r is incident is also 0.
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The following lemma follows immediately from G being a connected trian-
gulated graph.

Lemma 5.7.1. A vertex v of G with level(v) = i ≥ 1 is incident to at least one
level-(i− 1) face, zero or more level-i faces, and no faces at other levels.

Corollary 5.7.2. For every face f of G other than f∞, there is a face g of level
less than that of f and an f -to-g path P in G∗ all of whose vertices (which are
faces of G) except g have the same level as f .

Proof. Let i > 0 be the level of f . Consider the vertex v incident to f whose
level is i. By Lemma 5.7.1, v is incident to at least one level i − 1 face and
only to faces at levels i − 1 or i. Let d be the reverse of a dart of f such that
headG(d) = v. Let P be a path in G∗ consisting of darts belonging to v, in
order of the permutation cycle of v, starting at d and ending at the first dart
whose head is a level-(i− 1) face of G. By construction, P starts at f , and all
vertices of P except the last one have level i.

5.7.2 The connected-components tree

For an integer i ≥ 0, let F+
i denote the set of faces of G with level at least i. Let

K+
i denote the set of connected components of the subgraph of G∗ induced by

F+
i . We refer to a connected component K ∈ K+

i as a level-i component, and
we define level(K) = i. With a slight abuse of notation we identify a connected
compoenet K of G∗, which is a subgraph of G∗, with the set of vertices of G∗

(faces of G) that belong to K. Thus, when it is convenient, we regard K as a
subset of F(G).

Lemma 5.7.3. For any triangulated connected graph G and face f∞, the com-
ponents

⋃
iK+

i form a noncrossing family of subsets of F (G).

Proof. Let K1 and K2 be two components in
⋃
iK+

i . Assume without loss of
generality that level(K1) ≤ level(K2). If any face of K2 belongs to K1 then, by
definition, every face of K2 belongs to K1.

As explained in Section 5.6, there is a rooted forest T corresponding to the
noncrossing family

⋃
iK+

i .

Lemma 5.7.4. The parent in T of a level-i component is a level-(i − 1) com-
ponent if i > 0.

Proof. Let K be a level-i component where i > 0. Since the level-i components
are disjoint, K is not contained in any other level-i component. Since K must
contain some level-i face f of G, K is not contained in any level-j component
where j > i. Let g be a level i−1 face that shares a vertex with f . Then the level-
i − 1 component K ′ containing g must contain K. Furthermore, for j ≤ i − 1,
any level-j component that contains K must also contain K ′. This shows that
K ′ is the unique minimal proper superset of K among the components.



5.7. THE CONNECTED-COMPONENTS TREE 65

Lemma 5.7.4 shows that a root of the forest of components must have level 0.
Since we assume G is connected, there is only one level-0 component, namely
the whole graph G∗, so it is the only root, and the forest is in fact a tree. We
call T the component tree.

Lemma 5.7.5 (BFS-Component-Tree Construction). There is a linear-time
algorithm to construct the component tree T .

Problem 5.8. Prove the Component-Tree Construction Lemma.

Lemma 5.7.6. For any level i, the cuts {δG∗(K) : K ∈ K+
i , i > 0} are

edge-disjoint.

Proof. Suppose K is a level-i component. Let fg be an edge of δG∗(K) where
g ∈ K. Then the level of f is less than i (else f would belong to K). Since
faces f and g share a vertex, their level differ by at most one, so level(f) =
i− 1. Therefore, for any component K ′ such that fg ∈ δG∗(K ′), we must have
level(K ′) = i and K ′ must contain g, hence K ′ = K.

Lemma 5.7.7. For any level i and any component K ∈ K+
i , δG∗(K) is a simple

cut.

Proof. Clearly K is connected in G∗. We need to show that V (G∗)−K is also
connected in G∗. Consider a face f ∈ G∗ −K with level(f) = j > 0. Let P be
the path in Corollay 5.7.2. Since f /∈ K, and since all faces along the path P
except the last have level j, P is a path in G∗ −K. An induction by level then
shows that every vertex in V (G∗)−K is connected in G∗ −K to a level-0 face.
Since all level zero face are incident to the same vertex r, they are connected in
G∗ −K, so G∗ −K is connected.

The simple-cut/simple-cycle theorem (Theorem 4.6.2) implies that for any
component K, the edges of δG∗(K) form a simple cycle in G whose enclosed set
of faces is exactly K. We call such a cycle the level cycle associated with K and
denote it by X(K). If K is a level-i component then we say that X(K) is a
level-i cycle.

The definition of face-levels with respect to the face-vertex incidence graph
implies that level-cycles at different levels are vertex disjoint.

Lemma 5.7.8. Let K,K ′ be components at distinct levels. X(K) and X(K ′)
are vertex disjoint.

Proof. Suppose K is a level-i component, and let v be a vertex of X(K). Thus
v is incident to a level-i face and to a level-(i − 1) face. By Lemma 5.7.1, any
face incident to v has levels i or i− 1. Hence, if v is a vertex of X(K ′), then K ′

must be a level-i component as well.

PK: Need a figure to give the reader a sense of the structure.
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5.8 Cycle separators

Theorem 5.8.1 (Planar-Cycle-Separator Theorem). There is a linear-time al-
gorithm that, for any simple undirected triangulated plane graph and any 3

4 -
proper assignment of weights to faces, edges, and vertices, returns a 3

4 -balanced
cycle separator C of size at most 4

√
n.

The algorithm is very similar to the vertex separator of Section 5.5. The
main difference is that it shortcuts that fundamental cycle at small level-cycles,
rather than at small BFS levels.

Assume for notational simplicity that the total weight is 1 and that weight
is assigned only to faces. The algorithm first computes a BFS tree T rooted at
an arbitrary vertex r. It designates some face incident to r as f∞ and computes
the component tree T .

5.8.1 Shortcutting a fundamental-cycle separator

Following Lemma 5.3.1, the algorithm finds a 3
4 -balanced fundamental-cycle

separator C with respect to T . Let imin and imax denote the minimum and
maximum level of a vertex of C, respectively.

We say that an edge uv penetrates a component K at u if u ∈ X(K) and v
is strictly enclosed by X(K). A set of edges penetrates K if some edge in the
set penetrates K.

Lemma 5.8.2. An edge uv with level(u) = i, level(v) = i+ 1 penetrates exactly
one component K. The level of K is i.

Proof. Since level(u) = i, and level(v) = i+ 1, the two faces f1 and f2 to which
uv belongs must have level i. Let K be the unique level-i component to which
f1 and f2 belong. Since level(u) = i, u ∈ X(K). Since level(v) = i + 1, v is
strictly enclosed by X(K).

We next show that K is the unique such component. Since the level-i com-
ponents are disjoint, v is in no other level-i component. Since the level of u is
i, u is in no level-j component for j > i. For any level-j component K ′ with
j < i, The vertices of X(K ′) have level j, so u /∈ X(K ′).

Lemma 5.8.3. For every integer i ∈ (imin, imax), C penetrates exactly one
level-i component Ki, and it does so at exactly two distinct vertices of X(Ki).

Proof. Let uw be the non-tree edge of C. Let v be the least common ancestor
of u and w in T . The cycle C consists of the edge uw, of a v-to-u leafward
paths P1, and a v-to-w leafward path P2. The level of v is level(v) = imin.
The level of u is level(u) = imax, and the level of w is either imax or imax − 1.
Since T is a BFS tree, and by Lemma 5.8.2, each of these paths penetrates
exactly one component at every level in (imin, imax). Let Kmax be the level
imax-component penetrated by P1. That is, u is strictly enclosed by X(Kmax).
Since the edge uw exists, w is also enclosed by X(Kmax). It follows that P1 and
P2 penetrate the same components. Since P1 and P2 are vertex disjoint (except
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at their start vertex v), C penetrates each of these components at exactly two
distinct vertices.

Let Ki denote the unique level-i component penetrated by C. For conve-
nience, let Xi denote X(Ki). Let W (Xi) denote the weight of faces enclosed by
Xi (that is, the weight of the component Ki), and let W̄ (Xi) denote the weight
of faces not enclosed by Xi. Let i− be the greatest integer satisfying

• imin < i− < imax

• |V (Xi)| ≤
√
n

• W̄ (Xi) ≤ 3/4

If no such a level exists we set i− := imin. Let i+ be the smallest integer
satisfying

• i− < i+ < imax

• |V (Xi)| ≤
√
n

• W (Xi) ≤ 3/4

If no such a level exists we set i+ := imax.
Since for any level i, the sets of faces enclosed and not enclosed by Xi are

disjoint, at least one of W (Xi) ≤ 3/4 ,W̄ (Xi) ≤ 3/4 is true. It follows that
each of the levels i− + 1, i− + 2, . . . , i+ − 1 has greater than

√
n vertices. By

Lemma 5.7.8 all these level-cycles are vertex disjoint, so the total number of
vertices among these levels cycle is greater than (i+−i−−1)

√
n, so i+−i−−1 <

n/
√
n =
√
n.

Let F1 be the set of faces enclosed by Xi+ if i+ < imax, and the empty set
if i+ = imax. Let F4 be the set of faces of G not enclosed by Xi− if i− > imin,
and the empty set if i− = imin. Let F2 be the set of faces enclosed by C, and
that belong to neither F1 nor to F4, and let F3 be the set of faces not enclosed
by C, and that belong to neither F1 nor to F4.

By choice of i+ and i−, for j = 1, 4 we have ω(Fj) ≤ 3/4. Since C is a
balanced separator, for j = 2, 3 we have ω(Fj) ≤ 3/4. Let j be such that
ω(Fj) ≥ 1

4 . Let C∗ be the boundary of Fj . That is, C∗ is the set of edges that
belong to exactly one face in Fj . The algorithm returns C∗.

5.8.2 Balanced, short, and simple cycle

Lemma 5.8.4. C∗ is a simple cycle.

Proof. If j = 1 then C∗ is the simple cycle Xi+ . If j = 4 then C∗ is the simple
cycle Xi− . By lemma 5.8.3, C intersect each of X(i−) and X(i+) exactly twice.
Thus, each of Xi− and Xi+ can be decomposed into two paths, one enclosed by
C and the other not enclosed by C. If j = 2 then C∗ is the simple cycle formed
by the edges of C enclosed by Xi− but not by Xi+ and by the edges of Xi− and
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Xi-
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Figure 5.4: This figure shows the cycle separator C penetrating the vertex
disjoint level-cycles Xi− and Xi+ , each at two distinct nodes. The sets of faces
Fj are also indicated. Their boundaries are simple cycles.

Xi+ enclosed by C. If j = 3 then C∗ is the simple cycle formed by the edges
of C enclosed by Xi− but not by Xi+ and by the edges of Xi− and Xi+ not
enclosed by C. See Figure 5.4 for an illustration.

By choice of j, C∗ is a 3
4 -balanced cycle separator. It remains to show that

C∗ consists of fewer than 4
√
n edges. By choice of i− and i+, |V (Xi−)| ≤ √n.

The monotonicity property of levels of vertices on leafward paths in T implies
that each of the two leafward tree paths comprising C has at most one vertex
at each level. Combining this with the fact that i+ − i− ≤

√
n, we get that the

number of edges of C enclosed by Xi− and not enclosed by Xi+ is 2
√
n. Thus

C∗ has fewer than 4
√
n edges. This completes the proof of Theorem 5.8.1.

5.9 Division into regions

In some cases it is useful to divide a graph into more than two regions. We next
discuss such divisions.

Definition 5.9.1. A region R of G is an edge-induced subgraph of G.

Definition 5.9.2. A division of G is a collection of regions such that each edge
is in at least one region. A vertex is a boundary vertex of the division if it is in
more than one region. A division is an r–division if there are O(n/r) regions,
and each region has at most r vertices and O(

√
r) boundary vertices.

Definition 5.9.3. A natural face of a region R is a face of R that is also a
face of G. A hole of R is a face of R that is not natural.
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Definition 5.9.4. An r–division with few holes is an r–division in which

• any edge of two regions is on a hole of each of them, and

• every region has O(1) holes.

Definition 5.9.5. A decomposition tree for G is a rooted tree in which each
leaf is assigned a region of G such that each edge of G is represented in some
region. For each node x of the decomposition tree, the region Rx corresponding
to x is the subgraph of G that is the union of the regions assigned to descendants
of x.

To avoid clutter we shall sometimes refer to x ∈ T simultaneously as a node
of T and as the corresponding region Rx of G. Thus, for example, we may
refer to the number of boundary vertices of x instead of writing the number of
boundary vertices of Rx.

Definition 5.9.6. A decomposition tree T admits an r–division with few holes
if there is a set S of nodes of T whose corresponding regions form an r–division
of G with few holes.

5.10 Computing a Decomposition Tree

In what follows we prove the following theorem, which states that one can
efficiently compute a decomposition tree that simultaneously admits essentially
all r–division.

Theorem 5.10.1. For a constant s, there is an O(n log n)-time algorithm that,
for any triangulated planar embedded graph G, outputs a binary decomposition
tree T for G that simultanously admits an r–division of G with few holes for
every r ≥ s.

In the remainder of this section we prove the theorem. Since the input graph
G is assumed to be triangulated, it follows that, for every region R of G, every
natural face is a triangle. The algorithm is invoked by calling the procedure
RecursiveDivide(G, 0), given in Algorithm 5.1.

Given a connected region R with more than s edges, and given a recursion-
depth parameter `, RecursiveDivide first triangulates each hole of R by
adding an artificial vertex and attaching it via artificial edges to each occur-
rence of a vertex on the boundary of the hole. Let R′ be the resulting graph.
See Figures 5.5(a), 5.5(b) for an illustration. The vertices and edges that are
not artificial are natural.

Next, the procedure uses the simple cycle separator algorithm (Theorem 5.8.1)
to find a simple-cycle separator C consisting of at most c

√
n natural vertices,

where c is a constant and n := |V (R)| is the number of vertices of R (which is
equivalent to the number of natural vertices of R′). Depending on the current
recursion depth `, the cycle separates R in a balanced way with respect to either
vertices, boundary vertices, or holes.
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Algorithm 5.1 RecursiveDivide(R, `)

1: let n = |V (R)|
2: if n ≤ s then
3: return a decomposition tree consisting of a leaf assigned R

4: if ` mod 3 = 0 then
5: separator chosen below to balance number of vertices
6: else if ` mod 3 = 1 then
7: separator chosen to balance number of boundary vertices
8: else if ` mod 3 = 2 then
9: separator chosen to balance number of holes

10: let R′ be the graph obtained from R as follows: triangulate each hole by
placing an artificial vertex in the hole and connecting it via artificial edges
to all occurrences of vertices on the boundary of the hole

11: find a balanced simple-cycle separator C in R′ with at most c
√
n natural

vertices
12: let F0, F1 be the sets of natural faces of R enclosed and not enclosed by C,

respectively
13: for i ∈ {0, 1} do
14: let Ri be the region consisting of the edges of faces in Fi and the edges of

C that are in R
15: Ti ←RecursiveDivide(Ri, `+ 1)

16: return the decomposition tree T consisting of a root with left subtree T0
and right subtree T1

Note that the cycle separator algorithm is invoked on R′, which has more
than n vertices since it also has some artificial vertices. However, we show in
Lemma 5.10.4 that there are at most twelve artificial vertices, the bound of c

√
n

still holds for some choice of c (since n ≥ s). The number of artificial vertices
on the separator does not matter in the analysis of RecursiveDivide.

The cycle C determines a bipartition of the faces of the triangulated graph
R′, which in turn induces a bipartition (F0, F1) of the natural faces of R. For
i ∈ {0, 1}, let Ri be the region consisting of the edges bounding the faces in Fi,
together with the edges of C that are in R (i.e. omitting the artificial edges added
to triangulate the artificial faces). See Figures 5.5(c), 5.5(d) for an illustration.

Lemma 5.10.2. If R is connected then R0 is connected and R1 is connected.

The procedure calls itself recursively on R0 and R1, obtaining decomposition
trees T0 and T1, respectively. The procedure creates a new decomposition tree
T by creating a new root corresponding to the region R and assigning as its
children the roots of T0 and T1.
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(a) A schematic diagram of a region
R with four holes (white faces, one of
them being the unbounded face).

xh

u

v

(b) The graph R′ and a cycle sepa-
rator C (solid red). Artificial trian-
gulation edges are dashed (triangula-
tion edges are not shown for the un-
bounded hole to avoid clutter).

(c) The region R0 consisting of the
edges bounding the faces not enclosed
by C together with the edges of C
that belong to R. Equivalently, R0

is the subgraph of R′ not strictly
enclosed by C without any artificial
edges and vertices. R0 has three
holes.

(d) The region R1 consisting of the
edges bounding the faces enclosed by
C together with the edges of C that
belong to R. Equivalently, R1 is the
subgraph of R′ enclosed by C without
any artificial edges and vertices. R1

has two holes. Note that a hole is not
necessarily a simple face.

Figure 5.5: Illustration of triangulating a hole and separating along a cycle.
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5.10.1 Number of Holes

The triangulation step (Line 10) divides each hole h into a collection of triangle
faces. We say a hole h is fully enclosed by C if all these triangle faces are enclosed
by C in R′.

Lemma 5.10.3. Suppose that there are k holes that are fully enclosed by C.
Then R0 has k + 1 holes.

Proof. We give an algorithmic proof. See Figure 5.5 for an illustration. Initialize
R′0 to be the graph obtained from R′ by deleting all edges not enclosed by C.
Then C is the boundary of the infinite face of R′0. Consider in turn each hole
h of R such that a nonempty proper subset of h’s triangle faces are enclosed by
C. For each such face h, C includes the artificial vertex xh placed in h, along
with two incident edges uxh and xhv where u and v are distinct vertices on
the boundary of h. Deleting all the remaining artificial edges of h modifies the
boundary of the infinite face by replacing uxh xhv with a subsequence of the
edges forming the boundary of h. In particular, deleting these artificial edges
does not create any new faces.

Finally, for each hole h that is fully enclosed by C, delete the artificial edges
of h, turning h into a face of R′0. The resulting graph is R0, whose holes are
the holes of R that were fully enclosed by C, together with the infinite face of
R0.

If the recursion depth mod 3 is 2, Line 11 of RecursiveDivide must select
a simple cycle in R′ that is balanced with respect to the number of holes. To
achieve this, for each hole h of R, the algorithm assigns weight 1 to one of the
triangles resulting from triangulating h in Line 10, and weight 0 to all other
triangles of h. Then the algorithm finds a cycle C that is balanced with respect
to these face-weights.

Lemma 5.10.4. For any region created by RecursiveDivide, the number of
holes is at most twelve.

Proof. By induction on the recursion depth `,

(A) if ` mod 3 = 0 then R has at most ten holes;

(B) if ` mod 3 = 1 then R has at most eleven holes;

(C) if ` mod 3 = 2 then R has at most twelve holes.

For ` = 0, there are no holes. Assume (C) holds for `. Since the cycle separator
C encloses at most 3/4 of the weight, it fully encloses at most nine holes. By
Lemma 5.10.3, R0 has at most ten holes. The symmetric argument applies to
R1. Thus (A) holds for `+ 1.

Similarly, by Lemma 5.10.3, if (A) holds for ` then (B) holds for `+ 1, and
if (B) holds for ` then (C) holds for `+ 1.
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5.10.2 Number of Vertices and Boundary Vertices

If the recursion depth mod 3 is 0, Line 11 of RecursiveDivide selects a simple
cycle in R′ that is balanced with respect to the number of natural vertices. To
achieve this, for each natural vertex v, the algorithm selects an adjacent face in
R′, dedicated to carry v’s weight. The weight of each face is defined to be the
number of vertices for which that face was selected. Since each face in R′ is a
triangle, every weight is an integer between 0 and 3. A cycle C is then chosen
that is balanced with respect to these face-weights.

If the recursion depth mod 3 is 1, the cycle must be balanced with respect
to the number of boundary vertices. For each boundary vertex, the algorithm
selects an incident face; the algorithm then proceeds as above.

In either case, the total weight enclosed by the cycle C is an upper bound
on the number of vertices (natural or boundary) strictly enclosed by C. Thus
at most 3/4 of the vertices (natural or boundary) of R′ are strictly enclosed by
C in R′. Similarly, at most 3/4 of the vertices are not enclosed by C in R′.

The vertices of R0 are the natural vertices of R′ enclosed by C (including
the natural vertices on C, which number at most c

√
|V (R)|), and the vertices

of R1 are the natural vertices of R′ not strictly enclosed by C. Let n := |V (R)|
and, for i ∈ {0, 1}, let ni := |V (Ri)|. We obtain

n0 + n1 ≤ n+ c
√
n. (5.1)

Moreover, if the recursion depth mod 3 is 0, then

max{n0, n1} ≤
3

4
n+ c

√
n. (5.2)

Similarly, let b be the number of boundary vertices of R, and, for i ∈ {0, 1}, let
bi be the number of boundary vertices of Ri. We obtain

b0 + b1 ≤ b+ c
√
n. (5.3)

Moreover, if the recursion depth mod 3 is 1, then

max{b0, b1} ≤
3

4
b+ c

√
n. (5.4)

5.10.3 Admitting an r–division

Let N be the number of vertices in the original input graph G. Consider the
decomposition tree T of G produced by RecursiveDivide. Each node x cor-
responds to a region Rx. We define n(x) := |V (Rx)|, and b(x) to be the number
of boundary vertices of Rx. We will show that for any given r ≥ s, T admits
an r–division of G. The analysis consists of two phases. In the first phase
(Lemma 5.10.8), we identify a set of O(N/r) regions for which the number of
vertices is at most r, and the average number of boundary vertices is O(

√
r).

However, some of the individual regions in this set might have too many bound-
ary vertices (since the number of vertices and boundary vertices do not necessar-
ily decrease at the same rate). We show that each such region can be replaced
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with smaller regions in T so that every region has O(
√
r) boundary vertices,

and the total number of regions remains O(N/r) (Lemma 5.10.9).

Deonte rk = N
(
3
4

)k
for any integer 0 ≤ k ≤ dlog 4

3
(N)e. Define the rank of

a node x of T to be the integer k such that rk+1 < n(x) ≤ rk.

Proposition 5.10.5. For any x ∈ T , the rank of x is not smaller than the rank
of any descendant of x in T .

Lemma 5.10.6. There is a constant s′ such that for any k < s′, any rank-k
node in T is the ancestor of at most 3 rank-k nodes in T .

Proof. Let k be the rank of x ∈ T . Thus, n(x) ≤ rk. If one child of x has rank
k, then it has at least 3

4n(x) vertices. Thus, by Equation 5.1, the other child of
x has at most 1

4n(x)+c
√
n(x) natural vertices. This can be guaranteed to be at

most 3
4n(x), which by an appropriate choice of s′. Therefore, at most once child

of x has rank k. The lemma follows since the separator is chosen to balance the
number of natural vertices at levels congruent to 0 modulo 3 of T .

Whenever a region x of T is separated into two descendant regions using
a cycle separator C, the vertices of C may become boundary vertices, which
appear now in both subregions. To bound the total number of boundary vertices
we shall bound in the following lemma the number of boundary vertices created
when separating regions of nodes of the same rank.

Lemma 5.10.7. There exists constants s′, γ′ depending on c such that, for any
rank k < logN − s′, the number of new boundary vertices (counting multiplici-
ties) created by separating rank-k nodes is at most γ′ N√rk .

Proof. By induction on k. The claim clearly holds for k = 0 since the root of
T , namely all of G, is the only node with rank 0, and separating a graph with
N vertices introduces c

√
N = cN/

√
r0 boundary vertices.

Assume the lemma is correct for all k′ < k. The sum over the number
of vertices in all the rootmost nodes of rank k (i.e., rank-k nodes that are
not descendants of any other rank-k nodes) is at most N plus the number of
boundary vertices contributed by all nodes with rank strictly less than k. By
the inductive hypothesis, this is at most

N +
∑

k′<k

γ′
N√
rk′

= N(1 +
γ′√
N

∑

k′

(4/3)
k′
2 ).

Since the number of vertices in each rank-k node is at least rk+1, there are at

most N
rk+1

(1+ γ′√
N

∑
k′(4/3)

k′
2 ) rootmost rank-k nodes. Therefore, by Lemma 5.10.6,

there are at most 3 N
rk+1

(1+ γ′√
N

∑
k′(4/3)

k′
2 ) rank-k nodes altogether. Each such

node creates at most c
√
rk new boundary vertices, so the number of new bound-

ary nodes contributed by rank-k nodes is bounded by

3cN

rk+1/
√
rk

(1 +
γ′√
N

∑

k′

(4/3)
k′
2 ) =

N√
rk

√
12c(1 +

γ′√
N

∑

k′<k

(4/3)
k′
2 ).
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This can be made at most γ′ N√rk by choosing s′ to be a constant satisfying
∑
k′<log 4

3
(N)−s′

(
4
3

)k′/2
<
√
N
2 , and γ′ >

√
48c.

Fix r and let Sr be the set of nodes y of T such that y’s region has no more
than r vertices but the region of y’s parent has more than r vertices. Note that
no node in Sr is an ancestor of any other. Let x̂ be the root of T . Recall that,
for any x ∈ T , b(x) denotes the number of boundary vertices of Rx.

Lemma 5.10.8 (Total Number of Boundary Vertices). There are constants s
and γ, depending on c, such that,

∑
x∈Sr

b(x) ≤ γN√
r

, provided that r > s.

Proof. Let k be the integer such that rk+1 < r ≤ rk. The parent of each node
in Sr has rank at most k. The sum

∑
x∈Sr

b(x) equals the sum over the new
boundary vertices created for each of the strict ancestors of nodes in Sr. All of
these ancestors have rank at most k, so by Lemma 5.10.7, there are constants
γ′, s′ such that, if k < log 4

3
N − s′,

∑

k′≤k
γ′

N√
rk′

= γ′N
1√
N

∑

k′≤k

(
4

3

)k/2
. (5.5)

This geometric sum is dominated by its last term, so, for some constant α,
it is bounded by

γ′αN
1√
N

(
4

3

)k/2
= γ′α

N√
rk
≤
√

4

3
γ′α

N√
r
.

Choosing s >
(
4
3

)s′
guarantees that k < log 4

3
N − s′. Then, setting γ =

√
4
3γ
′α

yields the lemma.

Lemma 5.10.8 implies that
∑
x∈Sr

n(x) is O(N), since the regions in Sr are

disjoint except for boundary vertices, of which there are at most O(N/
√
r). For

each parent y of a node x ∈ Sr, the corresponding region Ry has more than r
vertices, so the number of such parents is O(N/r), so |Sr| is O(N/r). Let c′ be
a constant to be determined. For a node x, let S′r(x) denote the set of rootmost
descendants y of x (where x is a descendant of itself) such that Ry has at most
c′
√
r boundary vertices. Let S′r =

⋃
x∈Sr
{S′r(x)}.

Lemma 5.10.9. The regions {Ry : y ∈ S′r} form an r–division with a constant
number of holes per region.

Proof. It follows from the definition of S′r that each region in this set has at
most r vertices and at most c′

√
r boundary vertices. It follows by induction

from Lemma 5.10.2 that each of these regions is connected. It follows from
Lemma 5.10.4 that each region has at most twelve holes. It remains to show
that |S′r| is O(N/r).
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Lemma 5.10.8 implies that
∑
x∈Sr

b(x) = O
(
N√
r

)
. We claim that, for every

node x ∈ Sr,
|S′r(x)| ≤ max{1, b(x)

c
√
r
− 12}. (5.6)

Summing over x ∈ Sr and using
∑
x∈Sr

b(x) = O
(
N√
r

)
proves that |S′r| is O(N/r).

We set c′ = 40c. The proof of Equation (5.6) is by induction. If b(x) ≤ c′√r
then S′r(x) = {x}, so the claim holds. Assume therefore that b(x) > c′

√
r.

Let y1, . . . , yk be the rootmost descendants y of x such that b(y) ≤ c′
√
r or

`(y)− `(x) = 3, ordered such that |S′r(y1)| ≥ |S′r(y2)| ≥ · · · ≥ |S′r(y8)|. Let q be
the cardinality of {i : |S′r(yi)| > 1}. Observe that q ≤ 8.

Case 0: q = 0. In this case, |S′r(x)| ≤ 8, and b(x)
c
√
r
− 12 > 40− 12 ≥ 8.

Case 1: q = 1. For some ancestor y of y1 that is a descendant of x, the
separator chosen for Ry is balanced in terms of boundary vertices. It follows

that b(y1) ≤ 3
4b(x) + 3c

√
r. By the inductive hypothesis, |S′r(y1)| ≤ b(y1)

c
√
r
− 12,

so

|S′r(x)| = |S′r(y1)|+ k − 1

≤ b(y1)

c
√
r
− 12 + 7

≤
3
4b(x) + 3c

√
r

c
√
r

− 12 + 7

≤ b(x)

c
√
r
− b(x)

4c
√
r

+ 3− 12 + 7

≤ b(x)

c
√
r
− 12,

because b(x) > c′
√
r = 40c

√
r.

Case 2: q = 2. In this case, b(y1) + b(y2) ≤ b(x) + 6c
√
r. Using the inductive

hypothesis on y1 and y2, we have

|S′r(x)| = |S′r(y1)|+ |S′r(y2)|+ k − 2

≤ b(y1)

c
√
r
− 12 +

b(y2)

c
√
r
− 12− 6

≤ b(x) + 6c
√
r

c
√
r

− 12− 12− 6

≤ b(x)

c
√
r
− 12.

Case 3: q > 2. This case is similar to Case 2.

5.10.4 Running time

Now we consider the running time of 5.1. Clearly, the running time is dominated
by the invocations of the simple cycle separator algorithm (Theorem 5.8.1 in
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Line 11, which take time linear in the size of R′, which is O(|R|). The running
time is therefore bounded by

∑
x∈T |Rx|. We shall count the contribution of

nodes of T to this sum by the rank of nodes of T .
The sum of b(x) over all rank-k nodes x in T is bounded by the sum over

the new boundary vertices created for all nodes of T with rank at most k.
This is precisely the quantity we had shown to be O(N/

√
rk) in the proof of

Lemma 5.10.8. Therefore, by Lemma 5.10.6 and since regions of nodes that are
not an ancestor of one another are disjoint except for boundary vertices,

∑

x has rank k

|Rx| = O(N).

Since the number of different ranks is O(logN), the total running time for com-
puting the decomposition tree T is O(N logN). It is easy to see that finding the
set S′r of nodes of T that correspond to an r–division can be done in additional
O(N) time.

5.11 Recursive divisions

Definition 5.11.1. For an increasing sequence r = (r0, r1, . . .) of numbers,
a recursive r–division of G (with few holes is a decomposition tree for G in
which, for i = 1, 2, . . ., the nodes at height i correspond to regions that form an
ri–division of G (with few holes).

A region consisting of a single arc uv is denoted R(uv). Such a region is said
to be atomic. It follows from Theorem 5.10.1 that

Corollary 5.11.2. There is an O(n log n) that, for any triangulated plane graph
G and for any increasing sequence r, outputs a recursive r–division of G with
few holes.

5.12 Chapter Notes

Ungar [Ungar, 1951] gave the first separator theorem for planar graph. His sepa-

rator had O(
√
n log3/2 n) vertices. Lipton and Tarjan [Lipton and Tarjan, 1979]

proved the first O(
√
n) separator theorem for planar graphs. Constant-factor

improvements were found by Djidjev [Djidjev, 1981] and Gazit [Gazit, 1986].
Miller [Miller, 1986] proved the first cycle-separator theorem for planar graphs.

Miller’s result was more general and had better constants than the cycle sep-
arator algorithm in Section 5.8. A constant-factor improvement was found by
Djidjev and Venkatesan [Djidjev and Venkatesan, 1997].

The O(
√
n)-vertex separator in Section 5.5, and the O(

√
n) cycle separator in

Section 5.8 are not quite the algorithms of Lipton and Tarjans [Lipton and Tarjan, 1979]
and of Miller [Miller, 1986]. They were designed so that the cycle separator algo-
rithm will follow more naturally from the vertex separator algorithm. The cycle
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separator algorithm includes ideas from [Klein et al., 2013, Fox-Epstein et al., 2013],
and from [Har-Peled and Nayyeri, 2017].

The notion of an r-division is due to Frederickson [Frederickson, 1987], who
gave an algorithm for finding one in O(n log n) time. Goodrich [Goodrich, 1995]
gave a O(n)-time algorithm for computing the complete decomposition tree re-
sulting from recursively separating an input graph using small vertex separa-
tors, until each region contains a single edge. His method can be adapted to
produce a recursive r–division, using the overall approach of Section 5.10. As
for r–divisions with few holes, these were first used in algorithms of Klein and
Subramanian [Klein and Subramanian, 1993, Subramanian, 1995], and subse-
quently in many other works. Klein, Mozes and Sommer [Klein et al., 2013]
gave a linear time algorithm for computing a recursive r–division with few
holes.


